
salt-sproxy Documentation

Mircea Ulinic

Oct 28, 2020

Contents

1 Why salt-sproxy 3

2 Is salt-sproxy a wrapper around salt-ssh? 5

3 Install 7

4 Quick Start 9

5 Usage 11

6 Docker 13

7 More usage examples 15

8 Extension Modules 35

9 See Also 51

Python Module Index 111

Index 113

i

ii

salt-sproxy Documentation

Salt plugin to automate the management and configuration of network devices at scale, without running (Proxy)
Minions.

Using salt-sproxy, you can continue to benefit from the scalability, flexibility and extensibility of Salt, while you
don’t have to manage thousands of (Proxy) Minion services. However, you are able to use both salt-sproxy and
your (Proxy) Minions at the same time.

Contents 1

salt-sproxy Documentation

2 Contents

CHAPTER 1

Why salt-sproxy

salt-sproxy can be used as a standalone tool to manage your devices without having any further requirements,
as well as an extension to your existing Salt environment (if you already have). In other words, if you have a Salt
installation where you manage some network devices and servers, installing salt-sproxy on your Master will
allow you to run any Salt command as always, e.g., executing salt * test.ping and salt-sproxy *
test.ping will have the exact same effect, and result. On top of that, using salt-sproxy allows you to manage
other devices for which you don’t run (Proxy) Minions for.

Of course, if you don’t already have Salt, no problem, you can start managing your devices straight away, check out
the quick start steps.

In brief, here are some benefits you can get by using salt-sproxy:

• Say goodbye to the burden of managing hundreds of system services for the Proxy Minion processes.

• Reuse your existing extension modules, templates, Pillars, States, etc., you may have already developed in your
environment, transparently.

• You can run it locally, on your own computer.

• Python programming made a breeze - might go well with the ISalt package.

• Integrates easily with your existing Salt environment (if you have), by installing the package on your Salt Master.

• Can continue to leverage the event-driven automation and orchestration methodologies.

• Can continue using any of the usual targeting mechanisms.

• REST API, see also the Salt REST API documentation.

• By sending events to a Salt Master, you are able to implement whatever auditing you need (e.g., what command
was executed by who and when, etc.).

• Benefit from inheriting _all_ the native Salt features and integrations contributed by thousands of users, and
tested in hundreds of different environments, over almost a decade of development.

3

https://github.com/mirceaulinic/salt-sproxy/blob/develop/docs/quick_start.rst
https://github.com/mirceaulinic/isalt
https://salt-sproxy.readthedocs.io/en/latest/targeting.html
https://salt-sproxy.readthedocs.io/en/latest/salt_api.html

salt-sproxy Documentation

4 Chapter 1. Why salt-sproxy

CHAPTER 2

Is salt-sproxy a wrapper around salt-ssh?

No, nothing to do with salt-ssh. The core of salt-sproxy is a Runner loaded dynamically on runtime, that spins up
a pool of child processes, each running a temporary light version of the Proxy Minion underneath; as soon as the
execution is complete for a device, its associated Proxy Minion is shut down, and another one takes its place into the
child processes bucket.

A source of confusion may also be the usage of the Roster interface, which, historically has only been used by salt-ssh,
although the Roster is not tightly coupled with salt-ssh: it just happened to be the only use case so far. Essentially, the
Roster simply provides a list of devices together with their credentials (e.g., similar to the inventory as dubbed in other
automation frameworks) - and now has another use case in salt-sproxy.

5

https://salt-sproxy.readthedocs.io/en/latest/roster.html

salt-sproxy Documentation

6 Chapter 2. Is salt-sproxy a wrapper around salt-ssh?

CHAPTER 3

Install

Install this package where you would like to manage your devices from. In case you need a specific Salt version, make
sure you install it beforehand, otherwise this package will bring the latest Salt version available instead.

The package is distributed via PyPI, under the name salt-sproxy.

Execute:

pip install salt-sproxy

See Installation for more detailed installation notes.

7

salt-sproxy Documentation

8 Chapter 3. Install

CHAPTER 4

Quick Start

See this recording for a live quick start:

In the above, minion1 is a dummy Proxy Minion, that can be used for getting started and make the first steps without
connecting to an actual device, but get used to the salt-sproxy methodology.

The Master configuration file is /home/mircea/master, which is why the command is executed using the
-c option specifying the path to the directory with the configuration file. In this Master configuration file, the
pillar_roots option points to /srv/salt/pillar which is where salt-sproxy is going to load the Pillar
data from. Accordingly, the Pillar Top file is under that path, /srv/salt/pillar/top.sls:

base:
minion1:
- dummy

This Pillar Top file says that the Minion minion1 will have the Pillar data from the dummy.sls from the same
directory, thus /srv/salt/pillar/dummy.sls:

proxy:
proxytype: dummy

In this case, it was sufficient to only set the proxytype field to dummy.

salt-sproxy can be used in conjunction with any of the available Salt Proxy modules, or others that you might
have in your own environment. See https://docs.saltstack.com/en/latest/topics/proxyminion/index.html to understand
how to write a new Proxy module if you require.

For example, let’s take a look at how we can manage a network device through the NAPALM Proxy:

In the above, in the same Python virtual environment as previously make sure you have NAPALM installed, by executing
pip install napalm (see https://napalm.readthedocs.io/en/latest/installation/index.html for further installation
requirements, depending on the platform you’re running on). The connection credentials for the juniper-router
are stored in the /srv/salt/pillar/junos.sls Pillar, and we can go ahead and start executing arbitrary Salt
commands, e.g., net.arp to retrieve the ARP table, or net.load_config to apply a configuration change on the router.

The Pillar Top file in this example was (under the same path as previously, as the Master config was the same):

9

https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.dummy.html
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html
https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://napalm.readthedocs.io/en/latest/installation/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.napalm_network.html#salt.modules.napalm_network.arp
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.napalm_network.html#salt.modules.napalm_network.load_config

salt-sproxy Documentation

base:
juniper-router:
- junos

Thanks to Tesuto for providing the virtual machine for the demos!

10 Chapter 4. Quick Start

https://www.tesuto.com/

CHAPTER 5

Usage

First off, make sure you have the Salt Pillar Top file correctly defined and the proxy key is available into the Pillar.
For more in-depth explanation and examples, check this tutorial from the official SaltStack docs.

Once you have that, you can start using salt-sproxy even without any Proxy Minions or Salt Master running. To
check, can start by executing:

$ salt-sproxy -L a,b,c --preview-target
- a
- b
- c

The syntax is very similar to the widely used CLI command salt, however the way it works is completely different
under the hood:

salt-sproxy <target> <function> [<arguments>]

Usage Example:

$ salt-sproxy cr1.thn.lon test.ping
cr1.thn.lon:

True

One of the most important differences between salt and salt-sproxy is that the former is aware of the devices
available, thanks to the fact that the Minions connect to the Master, therefore salt has the list of targets already
available. salt-sproxy does not have this, as it doesn’t require the Proxy Minions to be up and connected to the
Master. For this reason, you will need to provide it a list of devices, or a Roster file that provides the list of available
devices.

The following targeting options are available:

• -E, --pcre: Instead of using shell globs to evaluate the target servers, use pcre regular expressions.

• -L, --list: Instead of using shell globs to evaluate the target servers, take a comma or space delimited list of
servers.

• -G, --grain: Instead of using shell globs to evaluate the target use a grain value to identify targets, the syntax
for the target is the grain key followed by a globexpression: "os:Arch*".

11

https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html
https://docs.saltstack.com/en/latest/topics/ssh/roster.html

salt-sproxy Documentation

• -P, --grain-pcre: Instead of using shell globs to evaluate the target use a grain value to identify targets,
the syntax for the target is the grain key followed by a pcre regular expression: “os:Arch.*”.

• -N, --nodegroup: Instead of using shell globs to evaluate the target use one of the predefined nodegroups to
identify a list of targets.

• -R, --range: Instead of using shell globs to evaluate the target use a range expression to identify targets.
Range expressions look like %cluster.

Warning: Some of the targeting options above may not be avaialble for some Roster modules.

To use a specific Roster, configure the proxy_roster (or simply roster) option into your Master config file, e.g.,

proxy_roster: ansible

Note: It is recommended to prefer the proxy_roster option in the favour of roster as the latter is used by Salt
SSH. In case you want to use both salt-sproxy and Salt SSH, you may want to use different Roster files, which is why
there are two different options.

salt-sproxy will evauluate both proxy_roster and roster, in this order.

With the configuration above, salt-sproxy would try to use the ansbile Roster module to compile the Roster file
(typically /etc/salt/roster) which is structured as a regular Ansible Inventory file. This inventory should only
provide the list of devices.

The Roster can also be specified on the fly, using the -R or --roster options, e.g., salt-sproxy cr1.thn.
lon test.ping --roster=flat. In this example, we’d be using the flat Roster module to determine the list
of devices matched by a specific target.

When you don’t specify the Roster into the Master config, or from the CLI, you can use salt-sproxy to target on
or more devices using the glob or list target types, e.g., salt-sproxy cr1.thn.lon test.ping (glob)
or salt-sproxy -L cr1.thn.lon,cr2.thn.lon test.ping (to target a list of devices, cr1.thn.lon
and cr2.thn.lon, respectively).

Note that in any case (with or without the Roster), you will need to provide a valid list of Minions.

12 Chapter 5. Usage

https://docs.saltstack.com/en/latest/ref/roster/all/salt.roster.ansible.html#module-salt.roster.ansible
https://docs.saltstack.com/en/latest/ref/roster/all/salt.roster.flat.html#module-salt.roster.flat

CHAPTER 6

Docker

There are Docker images available should you need or prefer: https://hub.docker.com/r/mirceaulinic/salt-sproxy.

You can see here the available tags: https://hub.docker.com/r/mirceaulinic/salt-sproxy/tags. latest provides the
code merged into the master branch, and allinone-latest is the code merged into the master branch with
several libraries such as NAPALM, Netmiko, ciscoconfparse, or Ansible which you may need for your modules or
Roster (if you’d want to use the Ansible Roster, for example).

These can be used in various scenarios. For example, if you would like to use salt-proxy but without installing it,
and prefer to use Docker instead, you can define the following convoluted alias:

alias salt-sproxy='f(){ docker run --rm --network host -v $SALT_PROXY_PILLAR_DIR:/etc/
→˓salt/pillar/ -ti mirceaulinic/salt-sproxy salt-sproxy $@; }; f'

And in the SALT_PROXY_PILLAR_DIR environment variable, you set the path to the directory where you have the
Pillars, e.g.,

export SALT_PROXY_PILLAR_DIR=/path/to/pillars/dir

With this setup, you would be able to go ahead and execute “as normally” (with the difference that the code is executed
inside the container, however from the CLI it won’t look different):

salt-sproxy minion1 test.ping

13

https://hub.docker.com/r/mirceaulinic/salt-sproxy
https://hub.docker.com/r/mirceaulinic/salt-sproxy/tags
https://github.com/napalm-automation/napalm
https://github.com/ktbyers/netmiko
http://www.pennington.net/py/ciscoconfparse/
https://salt-sproxy.readthedocs.io/en/latest/roster/ansible.html

salt-sproxy Documentation

14 Chapter 6. Docker

CHAPTER 7

More usage examples

See the following examples to help getting started with salt-sproxy:

7.1 Usage Examples

7.1.1 salt-sproxy 101

This is the first example from the Quick Start section of the documentation.

Using the Master configuration file under examples/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/master /etc/salt/master
$ cp salt-sproxy/examples/101/pillar/*.sls /srv/salt/pillar/

The contents of these two files:

/srv/salt/pillar/top.sls:

base:
mininon1:
- dummy

/srv/salt/pillar/dummy.sls:

15

https://salt-sproxy.readthedocs.io/en/latest/#quick-start
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/master

salt-sproxy Documentation

proxy:
proxytype: dummy

Having this setup ready, you can go ahead an execute:

$ salt-sproxy minion1 test.ping
minion1:

True

let's display the list of packages installed via pip on this computer
$ salt-sproxy minion1 pip.list
minion1:

Jinja2:

2.10.1
MarkupSafe:

1.1.1
PyNaCl:

1.3.0
PyYAML:

5.1
Pygments:

2.4.0
asn1crypto:

0.24.0
bcrypt:

3.1.6
bleach:

3.1.0
certifi:

2019.3.9
cffi:

1.12.3

Alternative setup using Docker

1. Clone the salt-sproxy repository and change dir:

$ git clone https://github.com/mirceaulinic/salt-sproxy.git
$ cd salt-sproxy/

2. Using the allinone-latest Docker image (see Docker), you can run from this path:

$ docker run --rm -v $PWD/examples/101/pillar/:/srv/salt/pillar/ \
-ti mirceaulinic/salt-sproxy:allinone-latest bash

root@2c68721d93dc:/# salt-sproxy minion1 test.ping -l error
minion1:

True

7.1.2 Using the Ansible Roster

To be able to use the Ansible Roster, you will need to have ansible installed in the same environment as
salt-sproxy, e.g.,

16 Chapter 7. More usage examples

salt-sproxy Documentation

$ pip instal ansible

Using the Master configuration file under examples/ansible/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

proxy_roster: ansible
roster_file: /etc/salt/roster

Notice that compared to the previous examples, 101 and NAPALM, there are two additional options: roster_file
which specifies the path to the Roster file to use, and proxy_roster that tells how to interpret the Roster file - in
this case, the Roster file /etc/salt/roster is going to be loaded as an Ansible inventory. Let’s consider, for
example, the following Roster / Ansible inventory which you can find at examples/ansible/roster:

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:

raleigh:
hosts:
edge1.raleigh:

southwest:
children:
san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/ansible/master /etc/salt/master
$ cp salt-sproxy/examples/ansible/roster /etc/salt/roster
$ cp salt-sproxy/examples/ansible/pillar/*.sls /srv/salt/pillar/

7.1. Usage Examples 17

https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/ansible/master
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/101
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/napalm
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/ansible/roster

salt-sproxy Documentation

The contents of these files:

/srv/salt/pillar/top.sls:

base:
'edge1*':
- junos

'edge2*':
- eos

With this top file, Salt is going to load the Pillar data from /srv/salt/pillar/junos.sls for edge1.
seattle, edge1.atlanta, edge1.raleigh, edge1.sfo, and edge1.la, while loading the data from
/srv/salt/pillar/eos.sls for edge2.atlanta (and anything that would match the edge2* expression
should you have others).

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

/srv/salt/pillar/eos.sls:

proxy:
proxytype: napalm
driver: eos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note that in both case the hostname has been set as {{ opts.id | replace('.', '-') }}.
salt-sproxy.digitalocean.cloud.tesuto.com. opts.id points to the Minion ID, which means that
the Pillar data is rendered depending on the name of the device; therefore, the hostname for edge1.atlanta
will be edge1-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, the hostname for edge2.
atlanta is edge2-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, and so on.

Having this setup ready, you can go ahead an execute:

$ salt-sproxy '*' --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo

get the LLDP neighbors from all the edge devices
$ salt-sproxy 'edge*' net.lldp
edge1.vancouver:

~~~ snip ~~~
edge1.atlanta:

~~~ snip ~~~
edge1.sfo:

~~~ snip ~~~

(continues on next page)

18 Chapter 7. More usage examples



salt-sproxy Documentation

(continued from previous page)

edge1.seattle:
~~~ snip ~~~

edge1.la:
~~~ snip ~~~

edge1.raleigh:
~~~ snip ~~~

edge2.atlanta:
~~~ snip ~~~

Alternative setup using Docker

1. Clone the salt-sproxy repository and change dir:

$ git clone https://github.com/mirceaulinic/salt-sproxy.git
$ cd salt-sproxy/

2. Update examples/ansible/roster with your Ansible inventory.

3. Update examples/ansible/top.sls to ensure your Pillar Top file matches the name of the devices
from your Roster / Ansible inventory. Also, update the examples/ansible/eos.sls, examples/
ansible/junos.sls etc. files with your credentials to connect to your device(s).

To double check that the mapping is correct, you can execute:

$ docker run --rm -v $PWD/examples/ansible/master:/etc/salt/master \
-v $PWD/examples/ansible/roster:/etc/salt/roster \
-v $PWD/examples/ansible/pillar/:/srv/salt/pillar/ \
-ti mirceaulinic/salt-sproxy:allinone-latest bash

root@2c68721d93dc:/# salt-run pillar.show_pillar edge1.atlanta
proxy:

----------
proxytype:

napalm
driver:

junos
hostname:

edge1-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com
username:

test
password:

t35t1234

4. Using the allinone-latest Docker image (see Docker), you can run from this path:

$ docker run --rm -v $PWD/examples/ansible/master:/etc/salt/master \
-v $PWD/examples/ansible/roster:/etc/salt/roster \
-v $PWD/examples/ansible/pillar/:/srv/salt/pillar/ \
--network host \
-ti mirceaulinic/salt-sproxy:allinone-latest bash

root@2c68721d93dc:/# salt-sproxy -N southwest test.ping
edge1.la:

True
edge1.sfo:

True

7.1. Usage Examples 19



salt-sproxy Documentation

7.1.3 Using the File Roster

The File Roster allows you to easily manage the list of devices through an SLS file - that being any combination of the
available Roster modules: Jinja+YAML, YAML, JSON, pure Python, JSON5, HJSON, etc.

By default, the Roster file is /etc/salt/roster, but you can have a different path by configuring roster_file
(or --roster-file on the command line) to point to an alternative absolute path, e.g.,

/etc/salt/master

roster: file
roster_file: /path/to/roster/file

For starters, let’s consider the following simple Roster SLS file:

/etc/salt/roster

device1: {}
device2: {}

To check that everything is properly configured, you can execute:

$ salt-sproxy \* --preview-target
- device1
- device2

As always, you’ll need to provide the connection credentials, in the Pillar. That is, you can have a structure as the
following Pillar top file:

/srv/pillar/top.sls

base:
'*':
- proxy

And the connection credentials - example using NAPALM:

/srv/pillar/proxy.sls

proxy:
proxytype: napalm
driver: junos
hostname: {{ opts.id }}.example.com
password: superS3kure

With this configuration, device1 will try to connect to device1.example.com, and device2 to device2.
example.com, respectively, using the NAPALM Junos driver.

If you want more specific connection options per device, you can manage that in the Roster SLS file (under each device
you can specify any connection argument to override the details from the proxy Pillar), e.g.,

/etc/salt/roster

device1:
driver: eos
hostname: different-hostname-for-device1.example.com

device2:
password: m0reS3kure

20 Chapter 7. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/roster/pillar.html
https://docs.saltstack.com/en/latest/ref/renderers/


salt-sproxy Documentation

Using the previous example, device1 will connect to different-hostname-for-device1.example.
com using the NAPALM EOS driver for Arista, while device2 uses a different password.

In a similar way, you can provide static Grains per device, under the grains key, e.g.,

/etc/salt/roster:

device1:
grains:
site: site1

device2:
grains:
site: site2

If you prefer to manage a JSON structure instead:

/etc/salt/roster:

{
"device1": {
"grains": {

"site": "site1"
}

},
"device2": {
"grains": {

"site": "site2"
}

}
}

With that clarified, let’s make the Roster SLS file more dynamic, and instead of managing the list of devices manually,
have it auto-generated:

/etc/salt/roster:

{%- for i in range(50) %}
device{{ i }}:
grains:
site: site{{ i }}

{%- endfor %}

The example above provides a list of 50 devices. Although probably too simplistic for real-world usage, it may be
sufficient to exemplify the use-case.

Remember that being interpreted as an SLS, you can also invoke Salt functions, using the __salt__ global variable.
For example, to retrieve and build the list of devices dynamically using an HTTP query, you can do, e.g.,

{%- set ret = __salt__.http.query('https://netbox.live/api/dcim/devices/',
→˓decode=true) %}
{%- for device in ret.dict.results %}
{{ device.name }}:
grains:
site: {{ device.site.slug }}

{%- endfor %}

Ultimately, for higher complexity, consider using the pure Python Renderer whenever you need to put more business
logic in selecting the devices you need to manage.

7.1. Usage Examples 21

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py


salt-sproxy Documentation

7.1.4 salt-sproxy with network devices

This is the second example from the Quick Start section of the documentation.

To be able to use this example, make sure you have NAPALM installed - see the complete installation notes from
https://napalm.readthedocs.io/en/latest/installation/index.html.

Using the Master configuration file under examples/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/master /etc/salt/master
$ cp salt-sproxy/examples/napalm/pillar/*.sls /srv/salt/pillar/

The contents of these two files:

/srv/salt/pillar/top.sls:

base:
juniper-router:
- junos

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: juniper.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Having this setup ready, after you update the connection details, you can go ahead an execute:

$ salt-sproxy juniper-router test.ping
juniper-router:

True

# retrieve the ARP table from juniper-router
$ salt-sproxy juniper-router net.arp
juniper-router:

----------
comment:
out:

|_
----------
age:

849.0
interface:

fxp0.0
ip:

(continues on next page)

22 Chapter 7. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/#quick-start
https://napalm.readthedocs.io/en/latest/installation/index.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/master


salt-sproxy Documentation

(continued from previous page)

10.96.0.1
mac:

92:99:00:0A:00:00
|_
----------
age:

973.0
interface:

fxp0.0
ip:

10.96.0.13
mac:

92:99:00:0A:00:00
|_
----------
age:

738.0
interface:

em1.0
ip:

128.0.0.16
mac:

02:42:AC:13:00:02
result:

True

# apply a configuration change: dry run
$ salt-sproxy juniper-router net.load_config text='set system ntp server 10.10.10.1'
→˓test=True
juniper-router:

----------
already_configured:

False
comment:

Configuration discarded.
diff:

[edit system]
+ ntp {
+ server 10.10.10.1;
+ }

loaded_config:
result:

True

# apply the configuration change and commit
$ salt-sproxy juniper-router net.load_config text='set system ntp server 10.10.10.1'
juniper-router:

----------
already_configured:

False
comment:
diff:

[edit system]
+ ntp {
+ server 10.10.10.1;
+ }

loaded_config:
(continues on next page)

7.1. Usage Examples 23



salt-sproxy Documentation

(continued from previous page)

result:
True

If you run into issues when connecting to your device, you might want to go through this checklist: https://github.com/
napalm-automation/napalm#faq.

Note: For a better methodology on managing the configuration, you might want to take a look at the State system,
one of the most widely used State modules for configuration management through NAPALM being Netconfig.

Alternative setup using Docker

1. Clone the salt-sproxy repository and change dir:

$ git clone https://github.com/mirceaulinic/salt-sproxy.git
$ cd salt-sproxy/

2. Update the examples/napalm/junos.sls file with your credentials to connect to your device.

3. Using the allinone-latest Docker image (see Docker), you can run from this path:

$ docker run --rm -v $PWD/examples/napalm/pillar/:/srv/salt/pillar/ \
--network host \
-ti mirceaulinic/salt-sproxy:allinone-latest bash

root@2c68721d93dc:/# salt-sproxy juniper-router test.ping
juniper-router:

True
root@2c68721d93dc:/# salt-sproxy juniper-router net.load_config \

text='set system ntp server 10.10.10.1' test=True
juniper-router:

----------
already_configured:

False
comment:

Configuration discarded.
diff:

[edit system]
+ ntp {
+ server 10.10.10.1;
+ }

loaded_config:
result:

True

7.1.5 Using the NetBox Roster

To be able to use the NetBox Roster, you will need to have the pynetbox library installed in the same environment
as salt-sproxy, e.g.,

$ pip install pynetbox

Using the Master configuration file under examples/netbox/master:

/etc/salt/master:

24 Chapter 7. More usage examples

https://github.com/napalm-automation/napalm#faq
https://github.com/napalm-automation/napalm#faq
https://docs.saltstack.com/en/getstarted/fundamentals/states.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.netconfig.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/netbox/master


salt-sproxy Documentation

pillar_roots:
base:
- /srv/salt/pillar

proxy_roster: netbox

netbox:
url: https://url-to-your-netbox-instance

With this configuration, the list of devices is going to be loaded from NetBox, with the connection details provides
under the netbox key.

Note: To set up a NetBox instance, see the installation notes from https://netbox.readthedocs.io/en/stable/installation/.

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/netbox/master /etc/salt/master
$ cp salt-sproxy/examples/netbox/pillar/*.sls /srv/salt/pillar/

The contents of these files highly depend on the device names you have in your NetBox instance. The following
examples are crafted for device name starting with edge1 and edge2, e.g., edge1.atlanta, edge1.seattle
etc. If you have different device names in your NetBox instance, you’ll have to update these Pillars.

/srv/salt/pillar/top.sls:

base:
'edge1*':
- junos

'edge2*':
- eos

With this top file, Salt is going to load the Pillar data from /srv/salt/pillar/junos.sls for edge1.
seattle, edge1.atlanta, edge1.raleigh, edge1.sfo, and edge1.la, while loading the data from
/srv/salt/pillar/eos.sls for edge2.atlanta (and anything that would match the edge2* expression
should you have others).

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

/srv/salt/pillar/eos.sls:

proxy:
proxytype: napalm
driver: eos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

7.1. Usage Examples 25

https://netbox.readthedocs.io/en/stable/installation/


salt-sproxy Documentation

Note that in both case the hostname has been set as {{ opts.id | replace('.', '-') }}.
salt-sproxy.digitalocean.cloud.tesuto.com. opts.id points to the Minion ID, which means that
the Pillar data is rendered depending on the name of the device; therefore, the hostname for edge1.atlanta
will be edge1-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, the hostname for edge2.
atlanta is edge2-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, and so on.

Having this setup ready, you can go ahead an execute:

$ salt-sproxy '*' --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo
~~~ many others ~~~

get the LLDP neighbors from all the edge devices
$ salt-sproxy 'edge*' net.lldp
edge1.vancouver:

~~~ snip ~~~
edge1.atlanta:

~~~ snip ~~~
edge1.sfo:

~~~ snip ~~~
edge1.seattle:

~~~ snip ~~~
edge1.la:

~~~ snip ~~~
edge1.raleigh:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

Alternative setup using Docker

1. Clone the salt-sproxy repository and change dir:

$ git clone https://github.com/mirceaulinic/salt-sproxy.git
$ cd salt-sproxy/

2. Update examples/netbox/master with your NetBox details (URL and token).

Alternatively, for quick testing, you can also leave the existing values, to use the demo instance available at
https://netbox.live.

3. Using the allinone-latest Docker image (see Docker), you can run from this path (at the repository root):

$ docker run --rm -v $PWD/examples/netbox/master:/etc/salt/master \
-v $PWD/examples/netbox/pillar/:/srv/salt/pillar/ \
--network host \
-ti mirceaulinic/salt-sproxy:allinone-latest bash

root@2c68721d93dc:/# salt-sproxy \* --preview-target
- edge1.vlc1

26 Chapter 7. More usage examples

https://netbox.live


salt-sproxy Documentation

7.1.6 Using the Pillar Roster

You can think of the Pillar Roster as a Roster that loads the list of devices / inventory dynamically using the Pillar
subsystem. Or, in simpler words, you can use any of these features from here: https://docs.saltstack.com/en/latest/
ref/pillar/all/index.html to load the list of your devices, including: JSON / YAML HTTP API, load from MySQL
/ Postgres database, LDAP, Redis, MongoDB, etcd, Consul, and many others; needless to say that this is another
pluggable interface and, in case you have a more specific requirement, you can easily extend Salt in your environment
by providing another Pillar module under the salt://_pillar directory. For example, see this old yet still accurate
article: https://medium.com/@Drew_Stokes/saltstack-extending-the-pillar-494d41ee156d.

The core idea is that you are able to use the data pulled via the Pillar modules once you are able to execute the following
command and see the list of devices you’re aiming to manage:

$ salt-run pillar.show_pillar
devices:

- name: device1
...

It really doesn’t matter where is Salt pulling this data from.

By default, the Pillar Roster is going to check the Pillar data for * (any Minion), and load it from the devices
key. In other words, when executing salt-sproxy pillar.show_pillar the output should have at least the
devices key. To use different settings, have a look at the documentation: Pillar Roster.

Say we want to pull the list of devices from an HTTP API module providing the data in JSON format. In this case, we
can use the http_json module.

If the data is available at http://example.com/devices, and you can verify, e.g., using curl:

$ curl http://example.com/devices
{"devices": [{"name": "router1"}, {"name": "router2"}, {"name": "switch1"}]}

That being available, we can configure the http_json External Pillar:

/etc/salt/master:

roster: pillar

ext_pillar:
- http_json:

url: http://example.com/devices

Now, let’s verify that the data is pulled properly into the Pillar:

$ salt-run pillar.show_pillar
devices:

- name: router1
- name: router2
- name: switch1

That being validated, salt-sproxy is now aware of all the devices to be managed:

$ salt-sproxy \* --preview-target
- router1
- router2
- switch1

As well as other target types such as list or PCRE:

7.1. Usage Examples 27

https://salt-sproxy.readthedocs.io/en/latest/roster/pillar.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://medium.com/@Drew_Stokes/saltstack-extending-the-pillar-494d41ee156d
https://docs.saltstack.com/en/latest/ref/pillar/all/salt.pillar.http_json.html#module-salt.pillar.http_json
http://example.com/devices


salt-sproxy Documentation

# target a fixed list of devices:

$ salt-sproxy -L router1,router2 --preview-target
- router1
- router2

# target all devices with the name starting with "router",
# followed by one or more numbers:

$ salt-sproxy -E 'router\d+' --preview-target
- router1
- router2

The same methodology applies to any of the other External Pillar modules.

7.1.7 Salt REST API

Important: In the configuration examples below, for simplicity, I’ve used the auto external authentication, and
disabled the SSL for the Salt API. This setup is highly discouraged in production.

Using the Master configuration file under examples/salt_api/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

file_roots:
base:
- /srv/salt/extmods

rest_cherrypy:
port: 8080
disable_ssl: true

external_auth:
auto:
'*':
- '@runner'

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/salt_api/master /etc/salt/master
$ cp salt-sproxy/examples/salt_api/pillar/*.sls /srv/salt/pillar/

The contents of Pillar files:

/srv/salt/pillar/top.sls:

base:
mininon1:

(continues on next page)

28 Chapter 7. More usage examples

https://docs.saltstack.com/en/latest/ref/auth/all/salt.auth.auto.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/salt_api/master


salt-sproxy Documentation

(continued from previous page)

- dummy
juniper-router:
- junos

/srv/salt/pillar/dummy.sls:

proxy:
proxytype: dummy

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: juniper.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note: The top.sls, dummy.sls, and junos.sls are a combination of the previous examples, 101 and napalm,
which is going to allow use to execute against both the dummy device and a real network device.

In the example Master configuration file above, there’s also a section for the file_roots. As documented in The
Proxy Runner section of the documentation, you are going to reference the proxy Runner, e.g.

$ mkdir -p /srv/salt/extmods/_runners
$ cp salt-sproxy/salt_sproxy/_runners/proxy.py /srv/salt/extmods/_runners/

Or symlink:

$ ln -s /path/to/git/clone/salt-sproxy/salt_sproxy /srv/salt/extmods

With the rest_cherrypy section, the Salt API will be listening to HTTP requests over port 8080, and SSL being
disabled (not recommended in production):

rest_cherrypy:
port: 8080
disable_ssl: true

One another part of the configuration is the external authentication:

external_auth:
auto:
'*':
- '@runner'

This grants access to anyone to execute any Runner (again, don’t do this in production).

With this setup, we can start the Salt Master and the Salt API (running in background):

$ salt-master -d
$ salt-api -d

To verify that the REST API is ready, execute:

7.1. Usage Examples 29

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runners/proxy.html


salt-sproxy Documentation

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.1.1
Date: Wed, 05 Jun 2019 07:58:32 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 146

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "ssh", "wheel", "wheel_async"]}

Now we can go ahead and execute the CLI command from example 101, by making an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='minion1' \
-d function='test.ping' \
-d sync=True

return:
- minion1: true

Notice that eauth field in this case is auto as this is what we’ve configured in the external_auth on the Master.

Similarly, you can now execute the Salt functions from the NAPALM example, against a network device, by making
an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.arp' \
-d sync=True

return:
- juniper-router:

comment: ''
out:
- age: 891.0

interface: fxp0.0
ip: 10.96.0.1
mac: 92:99:00:0A:00:00

- age: 1001.0
interface: fxp0.0
ip: 10.96.0.13
mac: 92:99:00:0A:00:00

- age: 902.0
interface: em1.0
ip: 128.0.0.16

(continues on next page)

30 Chapter 7. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html


salt-sproxy Documentation

(continued from previous page)

mac: 02:42:AC:12:00:02
result: true

7.1.8 salt-sapi

Note: This functionality makes use of the sproxy and sproxy_async clients added in release 2020.2.0 through
the salt-sapi entry point. See https://salt-sproxy.readthedocs.io/en/latest/salt_api.html and https://salt-sproxy.
readthedocs.io/en/latest/salt_sapi.html for more details.

Important: In the configuration examples below, for simplicity, I’ve used the auto external authentication, and
disabled the SSL for the Salt API. This setup is highly discouraged in production.

Using the Master configuration file under examples/salt_sapi/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

file_roots:
base:
- /srv/salt/extmods

rest_cherrypy:
port: 8080
disable_ssl: true

external_auth:
auto:
'*':
- '@runner'

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/salt_sapi/master /etc/salt/master
$ cp salt-sproxy/examples/salt_sapi/pillar/*.sls /srv/salt/pillar/

The contents of Pillar files:

/srv/salt/pillar/top.sls:

base:
mininon1:
- dummy

juniper-router:
- junos

/srv/salt/pillar/dummy.sls:

7.1. Usage Examples 31

https://salt-sproxy.readthedocs.io/en/latest/salt_api.html
https://salt-sproxy.readthedocs.io/en/latest/salt_sapi.html
https://salt-sproxy.readthedocs.io/en/latest/salt_sapi.html
https://docs.saltstack.com/en/latest/ref/auth/all/salt.auth.auto.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/salt_sapi/master


salt-sproxy Documentation

proxy:
proxytype: dummy

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: juniper.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note: The top.sls, dummy.sls, and junos.sls are a combination of the previous examples, 101 and napalm,
which is going to allow use to execute against both the dummy device and a real network device.

In the example Master configuration file above, there’s also a section for the file_roots. As documented in The
Proxy Runner section of the documentation, you are going to reference the proxy Runner, e.g.

$ mkdir -p /srv/salt/extmods/_runners
$ cp salt-sproxy/salt_sproxy/_runners/proxy.py /srv/salt/extmods/_runners/

Or symlink:

$ ln -s /path/to/git/clone/salt-sproxy/salt_sproxy /srv/salt/extmods

With the rest_cherrypy section, the Salt API will be listening to HTTP requests over port 8080, and SSL being
disabled (not recommended in production):

rest_cherrypy:
port: 8080
disable_ssl: true

One another part of the configuration is the external authentication:

external_auth:
auto:
'*':
- '@runner'

This grants access to anyone to execute any Runner (again, don’t do this in production).

With this setup, we can start the Salt Master and the Salt API (running in background):

$ salt-master -d
$ salt-sapi -d

To verify that the REST API is ready, execute:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.1.1
Date: Wed, 01 Jan 2020 07:58:32 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *

(continues on next page)

32 Chapter 7. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runners/proxy.html


salt-sproxy Documentation

(continued from previous page)

Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 146

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "sproxy", "sproxy_async", "ssh", "wheel", "wheel_async
→˓"]}

Now we can go ahead and execute the CLI command from example 101, by making an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='sproxy' \
-d tgt='minion1' \
-d fun='test.ping'

return:
- minion1: true

Notice that eauth field in this case is auto as this is what we’ve configured in the external_auth on the Master.

Similarly, you can now execute the Salt functions from the NAPALM example, against a network device, by making
an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='sproxy' \
-d tgt='juniper-router' \
-d fun='net.arp'

return:
- juniper-router:

comment: ''
out:
- age: 891.0

interface: fxp0.0
ip: 10.96.0.1
mac: 92:99:00:0A:00:00

- age: 1001.0
interface: fxp0.0
ip: 10.96.0.13
mac: 92:99:00:0A:00:00

- age: 902.0
interface: em1.0
ip: 128.0.0.16
mac: 02:42:AC:12:00:02

result: true

7.1. Usage Examples 33

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html


salt-sproxy Documentation

34 Chapter 7. More usage examples



CHAPTER 8

Extension Modules

salt-sproxy is delivered together with a few extension modules that are dynamically loaded and immediately
available. Please see below the documentation for these modules:

8.1 Extension Roster Modules

8.1.1 Ansible Roster

Read in an Ansible inventory file or script

Flat inventory files should be in the regular ansible inventory format.

[servers]
salt.gtmanfred.com ansible_ssh_user=gtmanfred ansible_ssh_host=127.0.0.1 ansible_ssh_
→˓port=22 ansible_ssh_pass='password'

[desktop]
home ansible_ssh_user=gtmanfred ansible_ssh_host=12.34.56.78 ansible_ssh_port=23
→˓ansible_ssh_pass='password'

[computers:children]
desktop
servers

[names:vars]
http_port=80

then salt-ssh can be used to hit any of them

[~]# salt-ssh -N all test.ping
salt.gtmanfred.com:

True
home:

(continues on next page)

35



salt-sproxy Documentation

(continued from previous page)

True
[~]# salt-ssh -N desktop test.ping
home:

True
[~]# salt-ssh -N computers test.ping
salt.gtmanfred.com:

True
home:

True
[~]# salt-ssh salt.gtmanfred.com test.ping
salt.gtmanfred.com:

True

There is also the option of specifying a dynamic inventory, and generating it on the fly

#!/bin/bash
echo '{

"servers": [
"salt.gtmanfred.com"

],
"desktop": [
"home"

],
"computers": {
"hosts": [],
"children": [

"desktop",
"servers"

]
},
"_meta": {
"hostvars": {

"salt.gtmanfred.com": {
"ansible_ssh_user": "gtmanfred",
"ansible_ssh_host": "127.0.0.1",
"ansible_sudo_pass": "password",
"ansible_ssh_port": 22

},
"home": {

"ansible_ssh_user": "gtmanfred",
"ansible_ssh_host": "12.34.56.78",
"ansible_sudo_pass": "password",
"ansible_ssh_port": 23

}
}

}
}'

This is the format that an inventory script needs to output to work with ansible, and thus here.

[~]# salt-ssh --roster-file /etc/salt/hosts salt.gtmanfred.com test.ping
salt.gtmanfred.com:

True

Any of the [groups] or direct hostnames will return. The ‘all’ is special, and returns everything.

_roster.ansible.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from the ansible inventory_file Default: /etc/salt/roster

36 Chapter 8. Extension Modules



salt-sproxy Documentation

8.1.2 File Roster

Load the list of devices from an arbitrary SLS file.

To use this module, you only need to configure the –roster option to file (on the CLI or Master config), and if the
Roster SLS file is in a different location than /etc/salt/roster, you’d also need to specify --roster-file
(or roster_file in the Master config).

_roster.file.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from the sls file, checks opts for location but defaults to /etc/salt/roster

8.1.3 NetBox Roster

Load devices from NetBox, and make them available for salt-ssh or salt-sproxy (or any other program that doesn’t
require (Proxy) Minions running).

Make sure that the following options are configured on the Master:

netbox:
url: <NETBOX_URL>
token: <NETBOX_USERNAME_API_TOKEN (OPTIONAL)>
keyfile: </PATH/TO/NETBOX/KEY (OPTIONAL)>

If you want to pre-filter the devices, so it won’t try to pull the whole database available in NetBox, you can configure
another key, filters, under netbox, e.g.,

netbox:
url: <NETBOX_URL>
filters:
site: <SITE>
status: <STATUS>

Hint: You can use any NetBox field as a filter.

Important: In NetBox v2.6 the default view permissions changed, so salt-sproxy may not able to get the device
list from NetBox by default.

Add EXEMPT_VIEW_PERMISSIONS = ['*'] to the configuration.pyNetBox file to change this behavior.
See https://github.com/netbox-community/netbox/releases/tag/v2.6.0 for more information

_roster.netbox.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from NetBox.

8.1.4 Pillar Roster

Load the list of devices from the Pillar.

Simply configure the roster option to point to this module, while making sure that the data is available. As the
Pillar is data associated with a specific Minion ID, you may need to ensure that the Pillar is correctly associated with
the Minion configured (default *), under the exact key required (default devices). To adjust these options, you can
provide the following under the roster_pillar option in the Master configuration:

minion_id: * The ID of the Minion to compile the data for. Default: * (any Minion).

8.1. Extension Roster Modules 37

https://github.com/digitalocean/netbox
https://github.com/netbox-community/netbox/releases/tag/v2.6.0


salt-sproxy Documentation

pillar_key: devices The Pillar field to pull the list of devices from. Default: devices.

saltenv: base The Salt environment to use when compiling the Pillar data.

pillarenv The Pillar environment to use when compiling the Pillar data.

Configuration example:

roster: pillar
roster_pillar:

minion_id: sproxy
pillar_key: minions

With the following configuration, when executing salt-run pillar.show_pillar sproxy you should have
under minions the list of devices / Minions you want to manage.

Hint: The Pillar data can either be provided as files, or using one or more External Pillars. Check out https:
//docs.saltstack.com/en/latest/ref/pillar/all/index.html for the complete list of available Pillar modules you can use.

_roster.pillar.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from External Pillar requested.

8.2 Extension Runners

8.2.1 Proxy Runner

Salt Runner to invoke arbitrary commands on network devices that are not managed via a Proxy or regular Minion.
Therefore, this Runner doesn’t necessarily require the targets to be up and running, as it will connect to collect the
Grains, compile the Pillar, then execute the commands.

class _runners.proxy.SProxyMinion(opts, context=None)
Create an object that has loaded all of the minion module functions, grains, modules, returners etc. The SProx-
yMinion allows developers to generate all of the salt minion functions and present them with these functions for
general use.

gen_modules(initial_load=False)
Tell the minion to reload the execution modules.

CLI Example:

salt '*' sys.reload_modules

class _runners.proxy.StandaloneProxy(opts, unreachable_devices=None)

_runners.proxy.execute(tgt, salt_function=None, tgt_type=’glob’, roster=None, pre-
view_target=False, target_details=False, timeout=60, with_grains=True,
with_pillar=True, preload_grains=True, preload_pillar=True, de-
fault_grains=None, default_pillar=None, args=(), batch_size=10,
batch_wait=0, static=False, events=True, cache_grains=True,
cache_pillar=True, use_cached_grains=True, use_cached_pillar=True,
use_existing_proxy=False, no_connect=False, test_ping=False, tar-
get_cache=False, target_cache_timeout=60, preload_targeting=False,
invasive_targeting=False, failhard=False, summary=False, verbose=False,
show_jid=False, progress=False, hide_timeout=False, sync_roster=False,
sync_modules=False, sync_grains=False, sync_all=False, returner=”,
returner_config=”, returner_kwargs=None, **kwargs)

38 Chapter 8. Extension Modules

https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html


salt-sproxy Documentation

Invoke a Salt function on the list of devices matched by the Roster subsystem.

tgt The target expression, e.g., * for all devices, or host1,host2 for a list, etc. The tgt_list argument
must be used accordingly, depending on the type of this expression.

salt_function The name of the Salt function to invoke.

tgt_type: glob The type of the tgt expression. Choose between: glob (default), list, pcre, rage, or
nodegroup.

roster: None The name of the Roster to generate the targets. Alternatively, you can specify the name of the
Roster by configuring the proxy_roster option into the Master config.

preview_target: False Return the list of Roster targets matched by the tgt and tgt_type arguments.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

with_grains: True Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

arg The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

batch_size: 10 The size of each batch to execute.

static: False Whether to return the results synchronously (or return them as soon as the device replies).

events: True Whether should push events on the Salt bus, similar to when executing equivalent through the
salt command.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: True Cache the compiled Pillar data before returning.

cache_grains: True Cache the collected Grains before returning.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

no_connect: False Don’t attempt to initiate the connection with the remote device. Default: False (it will
initiate the connection).

test_ping: False When using the existing Proxy Minion with the use_existing_proxy option, can use
this argument to verify also if the Minion is responsive.

target_cache: True Whether to use the cached target matching results.

target_cache_timeout: 60 The duration to cache the target results for (in seconds).

CLI Example:

8.2. Extension Runners 39



salt-sproxy Documentation

salt-run proxy.execute_roster edge* test.ping
salt-run proxy.execute_roster junos-edges test.ping tgt_type=nodegroup

_runners.proxy.execute_devices(minions, salt_function, with_grains=True, with_pillar=True,
preload_grains=True, preload_pillar=True, de-
fault_grains=None, default_pillar=None, args=(),
batch_size=10, batch_wait=0, static=False, tgt=None,
tgt_type=None, jid=None, events=True, cache_grains=True,
cache_pillar=True, use_cached_grains=True,
use_cached_pillar=True, use_existing_proxy=False,
existing_minions=None, no_connect=False, ros-
ter_targets=None, test_ping=False, preload_targeting=False,
invasive_targeting=False, failhard=False, timeout=60,
summary=False, verbose=False, progress=False,
hide_timeout=False, returner=”, returner_config=”, re-
turner_kwargs=None, **kwargs)

Execute a Salt function on a group of network devices identified by their Minion ID, as listed under the
minions argument.

minions A list of Minion IDs to invoke function on.

salt_function The name of the Salt function to invoke.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

with_grains: False Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

preload_pillar: True Whether to preload Pillar data before opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

args The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

batch_size: 10 The size of each batch to execute.

static: False Whether to return the results synchronously (or return them as soon as the device replies).

events: True Whether should push events on the Salt bus, similar to when executing equivalent through the
salt command.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: True Cache the compiled Pillar data before returning.

cache_grains: True Cache the collected Grains before returning.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

40 Chapter 8. Extension Modules



salt-sproxy Documentation

no_connect: False Don’t attempt to initiate the connection with the remote device. Default: False (it will
initiate the connection).

test_ping: False When using the existing Proxy Minion with the use_existing_proxy option, can use
this argument to verify also if the Minion is responsive.

CLI Example:

salt-run proxy.execute "['172.17.17.1', '172.17.17.2']" test.ping driver=eos
→˓username=test password=test123

_runners.proxy.salt_call(minion_id, salt_function=None, unreachable_devices=None,
failed_devices=None, with_grains=True, with_pillar=True,
preload_grains=True, preload_pillar=True, default_grains=None,
default_pillar=None, cache_grains=True, cache_pillar=True,
use_cached_grains=True, use_cached_pillar=True,
use_existing_proxy=False, no_connect=False, jid=None, ros-
ter_opts=None, test_ping=False, tgt=None, tgt_type=None,
preload_targeting=False, invasive_targeting=False, failhard=False,
timeout=60, returner=”, returner_config=”, returner_kwargs=None,
args=(), **kwargs)

Invoke a Salt Execution Function that requires or invokes an NAPALM functionality (directly or indirectly).

minion_id: The ID of the Minion to compile Pillar data for.

salt_function The name of the Salt function to invoke.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

with_grains: True Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

preload_pillar: True Whether to preload Pillar data before opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: True Cache the compiled Pillar data before returning.

cache_grains: True Cache the collected Grains before returning.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

no_connect: False Don’t attempt to initiate the connection with the remote device. Default: False (it will
initiate the connection).

jid: None The JID to pass on, when executing.

8.2. Extension Runners 41



salt-sproxy Documentation

test_ping: False When using the existing Proxy Minion with the use_existing_proxy option, can use
this argument to verify also if the Minion is responsive.

arg The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

CLI Example:

salt-run proxy.salt_call bgp.neighbors junos 1.2.3.4 test test123
salt-run proxy.salt_call net.load_config junos 1.2.3.4 test test123 text='set
→˓system ntp peer 1.2.3.4'

8.3 Execution Modules

8.3.1 NetBox Execution Module

NetBox

Module to query NetBox

codeauthor Zach Moody <zmoody@do.co>

maturity new

depends pynetbox

Note: This code, distributed as part of salt-sproxy, has been copied from the main Salt project, maintained by
SaltStack, to provide various enhancements and fixes to the original module.

The following config should be in the minion config file. In order to work with secrets you should provide a token
and path to your private key file:

netbox:
url: <NETBOX_URL>
token: <NETBOX_USERNAME_API_TOKEN (OPTIONAL)>
keyfile: </PATH/TO/NETBOX/KEY (OPTIONAL)>

New in version 2018.3.0: This module has been introduced in Salt release 2018.3.0.

In salt-sproxy, this module has been included beginning with version 2019.10.0.

_modules.netbox.create_circuit(name, provider_id, circuit_type, description=None)
New in version 2019.2.0.

Create a new Netbox circuit

name Name of the circuit

provider_id The netbox id of the circuit provider

circuit_type The name of the circuit type

asn The ASN of the circuit provider

description The description of the circuit

CLI Example:

42 Chapter 8. Extension Modules

mailto:zmoody@do.co


salt-sproxy Documentation

salt myminion netbox.create_circuit NEW_CIRCUIT_01 Telia Transit 1299 "New Telia
→˓circuit"

_modules.netbox.create_circuit_provider(name, asn=None)
New in version 2019.2.0.

Create a new Netbox circuit provider

name The name of the circuit provider

asn The ASN of the circuit provider

CLI Example:

salt myminion netbox.create_circuit_provider Telia 1299

_modules.netbox.create_circuit_termination(circuit, interface, device, speed, xcon-
nect_id=None, term_side=’A’)

New in version 2019.2.0.

Terminate a circuit on an interface

circuit The name of the circuit

interface The name of the interface to terminate on

device The name of the device the interface belongs to

speed The speed of the circuit, in Kbps

xconnect_id The cross-connect identifier

term_side The side of the circuit termination

CLI Example:

salt myminion netbox.create_circuit_termination NEW_CIRCUIT_01 xe-0/0/1 myminion
→˓10000 xconnect_id=XCON01

_modules.netbox.create_circuit_type(name)
New in version 2019.2.0.

Create a new Netbox circuit type.

name The name of the circuit type

CLI Example:

salt myminion netbox.create_circuit_type Transit

_modules.netbox.create_device(name, role, model, manufacturer, site)
New in version 2019.2.0.

Create a new device with a name, role, model, manufacturer and site. All these components need to be already
in Netbox.

name The name of the device, e.g., edge_router

role String of device role, e.g., router

model String of device model, e.g., MX480

manufacturer String of device manufacturer, e.g., Juniper

site String of device site, e.g., BRU

8.3. Execution Modules 43



salt-sproxy Documentation

CLI Example:

salt myminion netbox.create_device edge_router router MX480 Juniper BRU

_modules.netbox.create_device_role(role, color)
New in version 2019.2.0.

Create a device role

role String of device role, e.g., router

CLI Example:

salt myminion netbox.create_device_role router

_modules.netbox.create_device_type(model, manufacturer)
New in version 2019.2.0.

Create a device type. If the manufacturer doesn’t exist, create a new manufacturer.

model String of device model, e.g., MX480

manufacturer String of device manufacturer, e.g., Juniper

CLI Example:

salt myminion netbox.create_device_type MX480 Juniper

_modules.netbox.create_interface(device_name, interface_name, mac_address=None, descrip-
tion=None, enabled=None, lag=None, lag_parent=None,
form_factor=None)

New in version 2019.2.0.

Attach an interface to a device. If not all arguments are provided, they will default to Netbox defaults.

device_name The name of the device, e.g., edge_router

interface_name The name of the interface, e.g., TenGigE0/0/0/0

mac_address String of mac address, e.g., 50:87:89:73:92:C8

description String of interface description, e.g., NTT

enabled String of boolean interface status, e.g., True

lag: Boolean of interface lag status, e.g., True

lag_parent String of interface lag parent name, e.g., ae13

form_factor Integer of form factor id, obtained through _choices API endpoint, e.g., 200

CLI Example:

salt myminion netbox.create_interface edge_router ae13 description="Core uplink"

_modules.netbox.create_interface_connection(interface_a, interface_b)
New in version 2019.2.0.

Create an interface connection between 2 interfaces

interface_a Interface id for Side A

interface_b Interface id for Side B

CLI Example:

44 Chapter 8. Extension Modules



salt-sproxy Documentation

salt myminion netbox.create_interface_connection 123 456

_modules.netbox.create_inventory_item(device_name, item_name, manufacturer_name=None,
serial=”, part_id=”, description=”)

New in version 2019.2.0.

Add an inventory item to an existing device.

device_name The name of the device, e.g., edge_router.

item_name String of inventory item name, e.g., Transceiver.

manufacturer_name String of inventory item manufacturer, e.g., Fiberstore.

serial String of inventory item serial, e.g., FS1238931.

part_id String of inventory item part id, e.g., 740-01234.

description String of inventory item description, e.g., SFP+-10G-LR.

CLI Example:

salt myminion netbox.create_inventory_item edge_router Transceiver part_id=740-
→˓01234

_modules.netbox.create_ipaddress(ip_address, family, device=None, interface=None)
New in version 2019.2.0.

Add an IP address, and optionally attach it to an interface.

ip_address The IP address and CIDR, e.g., 192.168.1.1/24

family Integer of IP family, e.g., 4

device The name of the device to attach IP to, e.g., edge_router

interface The name of the interface to attach IP to, e.g., ae13

CLI Example:

salt myminion netbox.create_ipaddress 192.168.1.1/24 4 device=edge_router
→˓interface=ae13

_modules.netbox.create_manufacturer(name)
New in version 2019.2.0.

Create a device manufacturer.

name The name of the manufacturer, e.g., Juniper

CLI Example:

salt myminion netbox.create_manufacturer Juniper

_modules.netbox.create_platform(platform)
New in version 2019.2.0.

Create a new device platform

platform String of device platform, e.g., junos

CLI Example:

salt myminion netbox.create_platform junos

8.3. Execution Modules 45



salt-sproxy Documentation

_modules.netbox.create_site(site)
New in version 2019.2.0.

Create a new device site

site String of device site, e.g., BRU

CLI Example:

salt myminion netbox.create_site BRU

_modules.netbox.delete_interface(device_name, interface_name)
New in version 2019.2.0.

Delete an interface from a device.

device_name The name of the device, e.g., edge_router.

interface_name The name of the interface, e.g., ae13

CLI Example:

salt myminion netbox.delete_interface edge_router ae13

_modules.netbox.delete_inventory_item(item_id)
New in version 2019.2.0.

Remove an item from a devices inventory. Identified by the netbox id

item_id Integer of item to be deleted

CLI Example:

salt myminion netbox.delete_inventory_item 1354

_modules.netbox.delete_ipaddress(ipaddr_id)
New in version 2019.2.0.

Delete an IP address. IP addresses in Netbox are a combination of address and the interface it is assigned to.

id The Netbox id for the IP address.

CLI Example:

salt myminion netbox.delete_ipaddress 9002

_modules.netbox.filter_(app, endpoint, **kwargs)
Get a list of items from NetBox.

app String of netbox app, e.g., dcim, circuits, ipam

endpoint String of app endpoint, e.g., sites, regions, devices

kwargs Optional arguments that can be used to filter. All filter keywords are available in Netbox, which can be
found by surfing to the corresponding API endpoint, and clicking Filters. e.g., role=router

Returns a list of dictionaries

salt myminion netbox.filter dcim devices status=1 role=router

_modules.netbox.get_(app, endpoint, id=None, **kwargs)
Get a single item from NetBox.

app String of netbox app, e.g., dcim, circuits, ipam

46 Chapter 8. Extension Modules



salt-sproxy Documentation

endpoint String of app endpoint, e.g., sites, regions, devices

Returns a single dictionary

To get an item based on ID.

salt myminion netbox.get dcim devices id=123

Or using named arguments that correspond with accepted filters on the NetBox endpoint.

salt myminion netbox.get dcim devices name=my-router

_modules.netbox.get_circuit_provider(name, asn=None)
New in version 2019.2.0.

Get a circuit provider with a given name and optional ASN.

name The name of the circuit provider

asn The ASN of the circuit provider

CLI Example:

salt myminion netbox.get_circuit_provider Telia 1299

_modules.netbox.get_interfaces(device_name=None, **kwargs)
New in version 2019.2.0.

Returns interfaces for a specific device using arbitrary netbox filters

device_name The name of the device, e.g., edge_router

kwargs Optional arguments to be used for filtering

CLI Example:

salt myminion netbox.get_interfaces edge_router name="et-0/0/5"

_modules.netbox.get_ipaddresses(device_name=None, **kwargs)
New in version 2019.2.0.

Filters for an IP address using specified filters

device_name The name of the device to check for the IP address

kwargs Optional arguments that can be used to filter, e.g., family=4

CLI Example:

salt myminion netbox.get_ipaddresses device_name family=4

_modules.netbox.make_interface_child(device_name, interface_name, parent_name)
New in version 2019.2.0.

Set an interface as part of a LAG.

device_name The name of the device, e.g., edge_router.

interface_name The name of the interface to be attached to LAG, e.g., xe-1/0/2.

parent_name The name of the LAG interface, e.g., ae13.

CLI Example:

8.3. Execution Modules 47



salt-sproxy Documentation

salt myminion netbox.make_interface_child xe-1/0/2 ae13

_modules.netbox.make_interface_lag(device_name, interface_name)
New in version 2019.2.0.

Update an interface to be a LAG.

device_name The name of the device, e.g., edge_router.

interface_name The name of the interface, e.g., ae13.

CLI Example:

salt myminion netbox.make_interface_lag edge_router ae13

_modules.netbox.openconfig_interfaces(device_name=None)
New in version 2019.2.0.

Return a dictionary structured as standardised in the openconfig-interfaces YANG model, containing physical
and configuration data available in Netbox, e.g., IP addresses, MTU, enabled / disabled, etc.

device_name: None The name of the device to query the interface data for. If not provided, will use the Minion
ID.

CLI Example:

salt '*' netbox.openconfig_interfaces
salt '*' netbox.openconfig_interfaces device_name=cr1.thn.lon

_modules.netbox.openconfig_lacp(device_name=None)
New in version 2019.2.0.

Return a dictionary structured as standardised in the openconfig-lacp YANG model, with configuration data for
Link Aggregation Control Protocol (LACP) for aggregate interfaces.

Note: The interval and lacp_mode keys have the values set as SLOW and ACTIVE respectively, as this
data is not currently available in Netbox, therefore defaulting to the values defined in the standard. See interval
and lacp-mode for further details.

device_name: None The name of the device to query the LACP information for. If not provided, will use the
Minion ID.

CLI Example:

salt '*' netbox.openconfig_lacp
salt '*' netbox.openconfig_lacp device_name=cr1.thn.lon

_modules.netbox.slugify(value)
‘ Slugify given value. Credit to Djangoproject https://docs.djangoproject.com/en/2.0/_modules/django/utils/
text/#slugify

_modules.netbox.update_device(name, **kwargs)
New in version 2019.2.0.

Add attributes to an existing device, identified by name.

name The name of the device, e.g., edge_router

kwargs Arguments to change in device, e.g., serial=JN2932930

48 Chapter 8. Extension Modules

http://ops.openconfig.net/branches/master/openconfig-interfaces.html
http://ops.openconfig.net/branches/master/openconfig-lacp.html
http://ops.openconfig.net/branches/master/docs/openconfig-lacp.html#lacp-interfaces-interface-config-interval
http://ops.openconfig.net/branches/master/docs/openconfig-lacp.html#lacp-interfaces-interface-config-lacp-mode
https://docs.djangoproject.com/en/2.0/_modules/django/utils/text/#slugify
https://docs.djangoproject.com/en/2.0/_modules/django/utils/text/#slugify


salt-sproxy Documentation

CLI Example:

salt myminion netbox.update_device edge_router serial=JN2932920

_modules.netbox.update_interface(device_name, interface_name, **kwargs)
New in version 2019.2.0.

Update an existing interface with new attributes.

device_name The name of the device, e.g., edge_router

interface_name The name of the interface, e.g., ae13

kwargs Arguments to change in interface, e.g., mac_address=50:87:69:53:32:D0

CLI Example:

salt myminion netbox.update_interface edge_router ae13 mac_
→˓address=50:87:69:53:32:D0

8.3. Execution Modules 49



salt-sproxy Documentation

50 Chapter 8. Extension Modules



CHAPTER 9

See Also

9.1 Quick Start

This is a configuration example to quickly get started with salt-sproxy.

9.1.1 1. Install salt-sproxy

Run pip install salt-sproxy either at root, or within a virtual environment.

If you don’t know how to install pip, see this document: https://pip.pypa.io/en/stable/installing/.

For setting up a virtual environment, check out https://virtualenv.pypa.io/en/stable/installation/.

If you have more specific requirements for the salt-sproxy installation, see Installation.

9.1.2 2. Build the list of devices

Say you have a list of devices you want to manage. For ease, you can put them into a file:

/etc/salt/roster

router1:
driver: junos

router2:
driver: iosxr

switch1:
driver: eos

fw1:
driver: panos
host: fw1.firewall.as1234.net

Note: The /etc/salt/roster file can use any of the available SLS formats (combinations of the Salt Renderer
modules) - Jinja + YAML, YAML, JSON, pure Python, JSON5, HJSON, etc.

51

https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/stable/installation/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/


salt-sproxy Documentation

For more examples, see also Using the File Roster.

9.1.3 3. Configure

Apply the following configuration:

/etc/salt/master

roster: file

This is all you need at minimum, however, you may have more specific requirements which you can customise using
the configuration options documented in https://docs.saltstack.com/en/latest/ref/configuration/master.html.

9.1.4 4. Prepare the connection credentials

In a file, say /srv/pillar/proxy.sls, you’ll need the following structure:

proxy:
proxytype: <proxy type>
username: <username>
password: <password>
host: <host>

Where proxy type is the name of one of the available Proxy modules, either Salt native (https://docs.saltstack.com/
en/latest/ref/proxy/all/index.html), or developed in your own environment.

Note: Either of these fields (i.e., proxytype, username, password, host) can be specified in the list of
devices in the Pillar above (step 2). Generally, in this file, you put the list of parameters that are globally available to
any devices. For example, if you’re using the same username to manage all devices, you don’t need to put it in the
Pillar defined at step 2, but rather set it here.

Example:

proxy:
proxytype: napalm
username: salt
password: SaltSPr0xyRocks!
host: {{ opts.id }}.as1234.net

The trick in the SLS above is the host field, which is rendered differently for each device; for instance, the hostname
for the device router1 would be router1.as1234.net, and so on. As an exception, at step 2, for fw2 we
defined a most specific host field, so salt-sproxy is going to use that one instead.

In the same way you can build custom dynamically rendered fields, as your business logic requires, making use of the
flexibility of the SLS file format (which is by default Jinja + YAML, see this for more information).

Tip: If you want to use your own username / SSH key for authentication, you can configure the following:

username: {{ salt.environ.get('USER') }}

The configuration above, would dynamically use the username currently logged in, which could be particularly use-
ful for shared environments where multiple users (with potentially different access levels) can log in and run Salt
commands.

52 Chapter 9. See Also

https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/ref/renderers/


salt-sproxy Documentation

To authenticate using your SSH key, you need to set the password field blank / empty string (i.e., password:
'').

As for using a custom private SSH key, you should check the documentation of the Proxy module of choice. For
example, if you’re using NAPALM, the location of the SSH key would be configured under the optional_args
key, e.g.,

proxy:
proxytype: napalm
username: {{ salt.environ.get('USER') }}
password: ''
host: {{ opts.id }}.as1234.net
optional_args:
key_file: /path/to/priv/key

Granted you have the structure above in the /srv/pillar/proxy.sls file, as a last step, you only need to include
it into the Pillar top file:

/srv/pillar/top.sls

base:
'*':
- proxy

9.1.5 5. Happy automating!

With these three files (/etc/salt/roster, /etc/salt/master, and /srv/pillar/proxy.sls) config-
ured as described, you can now start automating your network, e.g.,

$ salt-sproxy router1 net.arp
# ... snip ...

$ salt-sproxy -L router1,router2 net.load_config \
text='set system ntp server 10.10.10.1'

# ... snip ...

$ salt-sproxy router2 napalm.junos_rpc 'get-validation-statistics'
# ... snip ...

$ salt-sproxy \* net.cli 'request system zeroize'

9.2 Installation

The base installation is pretty much straightforward, salt-sproxy is installable using pip. See https://packaging.
python.org/tutorials/installing-packages/ for a comprehensive guide on the installing Python packages.

Either when installing in a virtual environment, or directly on the base system, execute the following:

$ pip install salt-sproxy

If you would like to install a specific Salt version, you will firstly need to instal Salt (via pip) pinning to the desired
version, e.g.,

9.2. Installation 53

https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/


salt-sproxy Documentation

$ pip install salt==2018.3.4
$ pip install salt-sproxy

9.2.1 Easy installation

We also provide a script to install the system requirements: https://raw.githubusercontent.com/mirceaulinic/
salt-sproxy/master/install.sh

Usage example:

• Using curl

$ curl sproxy-install.sh -L https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

• Using wget

$ wget -O sproxy-install.sh https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

• Using fetch (on FreeBSD)

$ fetch -o sproxy-install.sh https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

One liner:

Warning: This method can be dangerous and it is not recommended on production systems.

$ curl -L https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.
→˓sh | sudo sh

See https://gist.github.com/mirceaulinic/bdbbbcfbc3588b1c8b1ec7ef63931ac6 for a sample one-line installation on a
fresh Fedora server.

The script ensures Python 3 is installed on your system, together with the virtualenv package, and others required for
Salt, in a virtual environment under the $HOME/venvs/salt-sproxy path. In fact, when executing, you will see
that the script will tell where it’s going to try to install, e.g.,

$ sudo sh install.sh

Installing salt-sproxy under /home/mircea/venvs/salt-sproxy

Reading package lists... Done

~~~ snip ~~~

Installation complete, now you can start using by executing the following command:
. /home/mircea/venvs/salt-sproxy/bin/activate

54 Chapter 9. See Also

https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.sh
https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.sh
https://gist.github.com/mirceaulinic/bdbbbcfbc3588b1c8b1ec7ef63931ac6

salt-sproxy Documentation

After that, you can start using it:

$. /home/mircea/venvs/salt-sproxy/bin/activate
(salt-sproxy) $
(salt-sproxy) $ salt-sproxy -V
Salt Version:

Salt: 2019.2.0
Salt SProxy: 2019.6.0b1

Dependency Versions:
Ansible: Not Installed

cffi: 1.12.3
dateutil: Not Installed

docker-py: Not Installed
gitdb: Not Installed

gitpython: Not Installed
Jinja2: 2.10.1

junos-eznc: 2.2.1
jxmlease: 1.0.1
libgit2: Not Installed

M2Crypto: Not Installed
Mako: Not Installed

msgpack-pure: Not Installed
msgpack-python: 0.6.1

NAPALM: 2.4.0
ncclient: 0.6.4
Netmiko: 2.3.3

paramiko: 2.4.2
pycparser: 2.19
pycrypto: 2.6.1

pycryptodome: Not Installed
pyeapi: 0.8.2
pygit2: Not Installed

PyNetBox: 4.0.6
PyNSO: Not Installed

Python: 3.6.7 (default, Oct 22 2018, 11:32:17)
python-gnupg: Not Installed

PyYAML: 5.1
PyZMQ: 18.0.1
scp: 0.13.2

smmap: Not Installed
textfsm: 0.4.1
timelib: Not Installed
Tornado: 4.5.3

ZMQ: 4.3.1

System Versions:
dist: Ubuntu 18.04 bionic

locale: UTF-8
machine: x86_64
release: 4.18.0-20-generic
system: Linux
version: Ubuntu 18.04 bionic

9.2. Installation 55

salt-sproxy Documentation

9.2.2 Upgrading

To install a newer version, you can execute pip install -U salt-sproxy, however this is also going to
upgrade your Salt installation. So in case you would like to use a specific Salt version, it might be a better idea to
install the specific salt-sproxy version you want. You can check at https://pypi.org/project/salt-sproxy/#history the list
of available salt-sproxy versions.

Example:

$ pip install salt-sproxy==2019.6.0

9.3 Using the Roster Interface

While from the CLI perspective salt-sproxy looks like it works similar to the usual salt command, in fact,
they work fundamentally different. One of the most important differences is that salt is aware of what Minions are
connected to the Master, therefore it is easy to know what Minions would be matched by a certain target expression (see
https://docs.saltstack.com/en/latest/topics/targeting/ for further details). In contrast, by definition, salt-sproxy
doesn’t suppose there are any (Proxy) Minions running, so it cannot possibly know what Minions would be matched
by an arbitrary expression. For this reasoning, we need to “help” it by providing the list of all the devices it should be
aware of. This is done through the Roster interface; even though this Salt subsystem has initially been developed for
salt-ssh.

There are several Roster modules natively available in Salt, or you may write a custom one in your own environment,
under the salt://_roster directory.

To make it work, you would need to provide two configuration options (either via the CLI, or through the Mas-
ter configuration file. See Command Line and Configuration Options, in particular -r (or -roster), and
--roster-file (when the Roster module loads the list of devices from a file).

For example, let’s see how we can use the Ansible Roster.

9.3.1 Roster usage example: Ansible

If you already have an Ansible inventory, simply drop it into a file, e.g., /etc/salt/roster.

Note: The Ansible inventory file doesn’t need to provide any connection details, as they must be configured into
the Pillar. If you do provide them however, they could be used to override the data compiled from the Pillar. See
Overriding Pillar data for an example.

With that in mind, let’s consider a very simply inventory, e.g.,

/etc/salt/roster:

[routers]
router1
router2
router3

[switches]
switch1
switch2

56 Chapter 9. See Also

https://pypi.org/project/salt-sproxy/#history
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/ssh/roster.html
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/ref/roster/all/index.html#all-salt-roster

salt-sproxy Documentation

Reference this file, and tell salt-sproxy to interpret this file as an Ansible inventory:

/etc/salt/master:

roster: ansible
roster_file: /etc/salt/roster

To verify that the inventory is interpreted correctly, run the following command which should display all the possible
devices salt-sproxy should be aware of:

$ salt-sproxy * --preview-target
- router1
- router2
- router3
- switch1
- switch2

Then you can check that your desired target matches - say run against all the routers:

$ salt-sproxy 'router*' --preview-target
- router1
- router2
- router3

Hint: If you don’t provide the Roster name and the path to the Roster file, into the Master config file, you can specify
them on the command line, e.g.,

$ salt-sproxy 'router*' --preview-target -r ansible --roster-file /etc/salt/roster

The default target matching is glob (shell-like globbing) - see Target Selection for more details, and other target
selection options.

Important: Keep in mind that some Roster modules may not implement all the possible target selection options.

Using the inventory above, we can also use the PCRE (Perl Compatible Regular Expression) matching and target
devices using a regular expression, e.g.,

$ salt-sproxy -E 'router(1|2).?' --preview-target
- router1
- router2
$ salt-sproxy -E '(switch|router)1' --preview-target
- router1
- switch1

The inventory file doesn’t necessarily need to be flat, can be as complex as you want, e.g.,

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
(continues on next page)

9.3. Using the Roster Interface 57

https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#regular-expressions

salt-sproxy Documentation

(continued from previous page)

hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:

raleigh:
hosts:
edge1.raleigh:

southwest:
children:
san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

Using this inventory, you can then run, for example, against all the devices in Atlanta, to gather the LLDP neighbors
for every device:

$ salt-sproxy '*.atlanta' net.lldp
edge1.atlanta:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

Targeting using groups

Another very important detail here is that, depending on the structure of the inventory, and how the devices are grouped,
you can use these groups to target using the -N target type (nodegroup). For example, based on the hierarchical
inventory file above, we can use these targets:

All devices in the USA:
$ salt-sproxy -N usa --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo

All devices in the North-West region:
$ salt-sproxy -N northwest --preview-target
- edge1.seattle
- edge1.vancouver

All devices in the Atlanta area:
$ salt-sproxy -N atlanta --preview-target

(continues on next page)

58 Chapter 9. See Also

salt-sproxy Documentation

(continued from previous page)

- edge1.atlanta
- edge2.atlanta

The nodegroups you can use for targeting depend on the names you’ve assigned in your inventory, and sometimes may
be more useful to use them vs. the device name (which may not contain the area / region / country name).

Overriding Pillar data

In the Roster file (Ansible inventory) you may prefer to have more specific connection credentials for some particular
devices. In this case, you only need to specify them directly under the device, or using host_vars as normally;
for example, let’s consider the inventory from the above, with the difference that now edge1.raleigh has more
specific details:

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:

raleigh:
hosts:
edge1.raleigh:
username: different
password: not-the-same

southwest:
children:

san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

With this Roster, salt-sproxywill try to authenticate using the username and password specified. The same goes to
the rest of the other credentials and fields required by the Proxy module you’re using, i.e., port, optional_args,
etc. - check the Salt documentation to understand what fields you have available.

Configuring static Grains

In a similar way to overriding Pillar data for authentication (see the paragraph above), you can equally configure static
Grains per device, by simply providing them under the grains key, e.g.,

9.3. Using the Roster Interface 59

salt-sproxy Documentation

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:
grains:
role: transit
site: atl01

raleigh:
hosts:
edge1.raleigh:

southwest:
children:
san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

With the Roster above, derived from the previous examples, the edge2.atlanta device is going to have two static
Grains associated, i.e., site and role with the values as configured in the Roster.

9.3.2 Loading the list of devices from the Pillar

The Pillar subsystem is powerful and flexible enough to be used as an input providing the list of devices and their
properties.

To use the Pillar Roster you only need to ensure that you can access the list of devices you want to manage into a Pillar.
The Pillar system is designed to provide data (from whatever source, i.e., HTTP API, database, or any file format you
may prefer) to one specific Minion (or some / all). That doesn’t mean that the Minion must be up and running, but
simply just that one or more Minions have access to this data.

In the Master configuration file, configure the roster or proxy_roster, e.g.,

roster: pillar

By default, the Pillar Roster is going to check the Pillar data for * (any Minion), and load it from the devices
key. In other words, when executing salt-sproxy pillar.show_pillar the output should have at least the
devices key. To use different settings, have a look at the documentation: Pillar Roster.

Consider the following example setup:

/etc/salt/master

60 Chapter 9. See Also

salt-sproxy Documentation

pillar_roots:
base:
- /srv/salt/pillar

roster: pillar

/srv/salt/pillar/top.sls

base:
'*':
- devices_pillar

'minion*':
- dummy_pillar

/srv/salt/pillar/devices_pillar.sls

devices:
- name: minion1
- name: minion2

/srv/salt/pillar/dummy_pillar.sls

proxy:
proxytype: dummy

With this configuration, you can verify that the list of expected devices is properly defined:

$ salt-run pillar.show_pillar
devices:

|_

name:

minion1
|_

name:

minion2

Having this available, we can now start using salt-sproxy:

$ salt-sproxy * --preview-target
- minion1
- minion2

When working with Pillar SLS files, you can provide them in any format, either Jinja + YAML, or pure Python, e.g.
generate a longer list of devices, dynamically:

/srv/salt/pillar/devices_pillar.sls

devices:
{% for id in range(100) %}
- name: minion{{ id }}
{%- endfor %}

Or:

/srv/salt/pillar/devices_pillar.sls

9.3. Using the Roster Interface 61

salt-sproxy Documentation

#!py

def run():
return {

'devices': [
'minion{}'.format(id_)
for id_ in range(100)

]
}

Note: The latter Python example would be particularly useful when the data compilation requires more computation,
while keeping the code readable, e.g., execute HTTP requests, or anything you can usually do in Python scripts in
general.

With either of the examples above, the targeting would match:

$ salt-sproxy * --preview-target
- minion0
- minion1

~~~ snip ~~~

- minion98
- minion99

As the Pillar SLS files are flexible enough to allow you to compile the list of devices you want to manage using
whatever way you need and possibly coded in Python. Say we would want to gather the list of devices from an HTTP
API:

/srv/salt/pillar/devices_pillar.sls

#!py

import requests

def run():
ret = requests.post('http://example.com/devices')
return {'devices': ret.json()}

Or another example, slightly more advanced - retrieve the devices from a MySQL database:

/srv/salt/pillar/devices_pillar.sls

#!py

import mysql.connector

def run():
devices = []
mysql_conn = mysql.connector.connect(host='localhost',

database='database',
user='user',
password='password')

get_devices_query = 'select * from devices'
cursor = mysql_conn.cursor()
cursor.execute(get_devices_query)

(continues on next page)

62 Chapter 9. See Also



salt-sproxy Documentation

(continued from previous page)

records = cursor.fetchall()
for row in records:

devices.append({'name': row[1]})
cursor.close()
return {'devices': devices}

Important: Everything with the Pillar system remains the same as always, so you can very well use also the External
Pillar to provide the list of devices - see https://docs.saltstack.com/en/latest/ref/pillar/all/index.html for the list of the
available External Pillars modules that allow you to load data from various sources.

Check also the Using the Pillar Roster example on how to load the list of devices from an External Pillar, as the
functionaly you may need might already be implemented and available.

Configuring static Grains

Using the devices_pillar.sls file from the previous examples, you can provide static Grains per device, under
the grains key, e.g.,

/srv/salt/pillar/devices_pillar.sls

devices:
{% for id in range(100) %}
- name: minion{{ id }}
grains:

site: site{{ id }}
{%- endfor %}

In this case, the Grains data is dynamically generated through the Jinja loop, however it could be provided in any way
you’d prefer. Executing the following command, you can check that the Grains data is properly distributed:

$ salt-sproxy minion17 grains.get site
minion17:

site17

9.3.3 Roster usage example: NetBox

The NetBox Roster is a good example of a Roster modules that doesn’t work with files, rather gathers the data from
NetBox via the API.

Note: The NetBox Roster module is currently not available in the official Salt releases, and it is distributed as part
of the salt-sproxy package and dynamically loaded on runtime, so you don’t need to worry about that, simply
reference it, configure the details as documented and start using it straight away.

To use the NetBox Roster, simply put the following details in the Master configuration you want to use (default
/etc/salt/master):

roster: netbox

netbox:
url: <NETBOX_URL>

9.3. Using the Roster Interface 63

https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://github.com/digitalocean/netbox
https://netbox.readthedocs.io/en/stable/api/overview/


salt-sproxy Documentation

You can also specify the token, and the keyfile but for this Roster specifically, the url is sufficient.

To verify that you are indeed able to retrieve the list of devices from your NetBox instance, you can, for example,
execute:

$ salt-run salt.cmd netbox.filter dcim devices
# ~~~ should normally return all the devices ~~~

# Or with some specific filters, e.g.:
$ salt-run salt.cmd netbox.filter dcim devices site=<SITE> status=<STATUS>

Once confirmed this works well, you can verify that the Roster is able to pull the data:

$ salt-sproxy '*' --preview-target

In the same way, you can then start executing Salt commands targeting using expressions that match the name of the
devices you have in NetBox:

$ salt-sproxy '*atlanta' net.lldp
edge1.atlanta:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

Enhanced Grain targeting

When NetBox Roster pulls the data from NetBox via the API, from the dcim app, devices endpoint, it retrieves
additional information about the device, e.g.,

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"id": 1,
"name": "edge1.vlc1",
"display_name": "edge1.vlc1",
"device_type": {

"id": 1,
"url": "https://netbox.live/api/dcim/device-types/1/",
"manufacturer": {

"id": 5,
"url": "https://netbox.live/api/dcim/manufacturers/5/",
"name": "Juniper",
"slug": "juniper"

},
"model": "MX960",
"slug": "mx960",
"display_name": "Juniper MX960"

},
"device_role": {

"id": 7,
"url": "https://netbox.live/api/dcim/device-roles/7/",
"name": "Router",
"slug": "router"

(continues on next page)

64 Chapter 9. See Also



salt-sproxy Documentation

(continued from previous page)

},
"tenant": null,
"platform": {

"id": 3,
"url": "https://netbox.live/api/dcim/platforms/3/",
"name": "Juniper Junos",
"slug": "juniper-junos"

},
"serial": "",
"asset_tag": null,
"site": {

"id": 1,
"url": "https://netbox.live/api/dcim/sites/1/",
"name": "VLC1",
"slug": "vlc1"

},
"rack": {

"id": 1,
"url": "https://netbox.live/api/dcim/racks/1/",
"name": "R1",
"display_name": "R1"

},
"position": 1,
"face": {

"value": 0,
"label": "Front"

},
"parent_device": null,
"status": {

"value": 1,
"label": "Active"

},
"primary_ip": null,
"primary_ip4": null,
"primary_ip6": null,
"cluster": null,
"virtual_chassis": null,
"vc_position": null,
"vc_priority": null,
"comments": "",
"local_context_data": null,
"tags": [],
"custom_fields": {},
"created": "2019-08-12",
"last_updated": "2019-08-12T11:08:21.706641Z"

}
]

}

All this data is by default available in the Grains when targeting, so you can use the Grain to match the devices you
want to run against.

Examples:

• Select devices under the router role:

salt-sproxy -G netbox:device_role:role test.ping

9.3. Using the Roster Interface 65



salt-sproxy Documentation

• Select devices from the vlc1 site:

salt-sproxy -G netbox:site:slug:vlc1 test.ping

9.3.4 Other Roster modules

If you may need to load your data from various other data sources, that might not be covered in the existing Roster
modules. Roster modules are easy to write, and you only need to drop them into your salt://_roster directory,
then it would be great if you could open source them for the benefit of the community (either submit them to this
repository, at https://github.com/mirceaulinic/salt-sproxy, or to the official Salt repository on GitHub)

9.4 Managing Static Grains

Grains are generally a delicate topic in Salt, particularly on Proxy Minions which need to be able to connect to the
remote device to collect the Grains, while the connection credentials may depend on the Grains themselves - that
becomes and chicken and egg type problem!

In salt-sproxy, you can configure static Grains, in different ways. One of the easiest is adding static data under the
grains (or sproxy_grains or default_grains) key in the Master config file, for example:

/etc/salt/master

grains:
salt:
role: proxy

The static Grains configured in this way are going to be shared among all the devices / Minions managed via salt-
sproxy.

Important: The static Grains configured in these ways are available to be used in your target expressions. For
example, the above can be used, e.g., salt-sproxy -G salt:role:proxy --preview-target.

To configure more specific Grains per device, or groups of devices, you have the following options:

9.4.1 Static Grains in File

To configure static Grains for one specific device, you can put your data as described in https://docs.saltstack.com/en/
latest/topics/grains/#grains-in-etc-salt-grains, more specifically under the /etc/salt/proxy.d/ directory. For
example, if you’d want to configure for the device router1, you’d have the following file:

/etc/salt/proxy.d/router1/grains

role: router

9.4.2 Static Grains in Roster

Some Extension Roster Modules modules allow you to put static Grains granularly. See, for example Configuring
static Grains (for the Pillar Roster) or Configuring static Grains (for the Ansible Roster).

66 Chapter 9. See Also

https://github.com/mirceaulinic/salt-sproxy
https://github.com/saltstack/salt
https://docs.saltstack.com/en/latest/topics/grains/#grains-in-etc-salt-grains
https://docs.saltstack.com/en/latest/topics/grains/#grains-in-etc-salt-grains


salt-sproxy Documentation

9.5 Targeting

Targeting devices is largely based on the Roster interface. This is the starting point, where salt-sproxy know what
devices you want to manage. The Roster interface can be a Pillar file, an Ansible inventory file, a NetBox instance and
so on. See Using the Roster Interface for more details, usage examples and documentation for each of the available
Roster options.

To put it in other words, the Roster provides the totality (or the universe) of devices you have. When you’re executing
a command, you may want to execute a command against all these devices, or only a subset of them. There are several
targeting selection mechanisms, as presented below.

Targeting in salt-sproxy, from an user perspective, is very similar to the native Salt targeting - however, the implemen-
tation is fundamentally different (again, please see Using the Roster Interface for more details on this); that’s why the
targeting in salt-sproxy comes with some caveats you should be aware of.

Tip: Before executing any command, it may be a good idea to check that your target matches the devices you want
to run against, by using the --preview-target CLI option, e.g.,

salt-sproxy -G netbox:role:router --preview-target

See also:

When targeting making use of Grains or Pillar data that depend on the device characteristics (such as interfaces, IP
addresses, OS version, platform details, and so on), or other properties retrieved from other systems, such as APIs,
databases, etc., salt-sproxy needs cached data which is obtained _only_ after the (first) execution is complete. To do
so, you have a number of options: once salt-sproxy is installed and configured, you can run salt-sproxy '*'
test.ping or similar to execute across all the devices and cache their data.

Alternatively, you may want to look at –invasive-targeting or –preload-targeting options. These two options would
allow you to work around this caveat, however bear in mind they’ll eveluate - and eventually connect to - every device
salt-sproxy is aware of, in order to determine which devices match your target.

9.5.1 Glob

Shell-style globbing on the device name / Minion ID.

See https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#globbing

Examples:

• Match all the devices salt-sproxy knows about:

salt-sproxy '*' test.ping

• Match edge1 and edge3 devices:

salt-sproxy 'edge[1,3]' test.ping

9.5.2 PCRE

PCRE stands for Perl Compatible Regular Expression, so you can target against devices with the name matching the
regular expression.

See also: https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#regular-expressions

9.5. Targeting 67

https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-invasive-targeting
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-preload-targeting
https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#globbing
https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#regular-expressions


salt-sproxy Documentation

Example: match top of rack switches with the name ending in a digit:

salt-sproxy -E '.*-tor\d' napalm.junos_rpc get-route-summary-information table=mpls.0

9.5.3 List

A list of device names.

Example: execute a command on three devices edge1, edge2, and edge3:

salt-sproxy -L 'edge1,edge2,edge3' net.arp

9.5.4 Grain

Targeting using Grain data.

This is a tricky subject. Unlike the native Salt, salt-sproxy doesn’t have access to device data before connecting
to it (i.e., it can’t possibly know device details before even connecting to it). You can however target using Grain
data, but there are some caveats, and it’s up to you to decide whether you want performance or limit the resource
consumption. Generally, Grain targeting won’t work at the first execution, as salt-sproxy needs cached data. An
alternative would be using the --invasive-targeting or --preload-targeting options, but that has a
price (see https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-invasive-targeting for more details).

See also:

See also: Managing Static Grains. Static Grains are always available, and can be anytime used in your targeting,
without any restrictions.

An exception is the NetBox Roster module which provides an additional set of Grains you can use, under the netbox
key. See the Enhanced Grain targeting section for more details.

Examples: match devices on their role:

salt-sproxy -G role:router test.ping

9.5.5 Grain PCRE

As the grain targeting, but instead of exact matching, can match on a regular expression on the Grain value.

Note: This targeting mechanism has the same caveats as the Grain.

Example: match the devices from multiple sites (e.g., lon1, lon2, etc.)

salt-sproxy -P site:lon\d test.ping

9.5.6 Pillar

Targeting using Pillar data.

Similarly to the Grain targeting, this is possible but with one caveats when you’re not running active Minions: salt-
sproxy needs this data cached in order to evaluate the target and determine which devices match, however using the CLI

68 Chapter 9. See Also

https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-invasive-targeting


salt-sproxy Documentation

(and configuration file) options --invasive-targeting or --preload-targeting, you can work around
this limitation. Once you’ve executed once, the data will be cached, and you can use it for future targets.

Hint: If you want to target against statically defined Pillar, whenever possible, static Grains may be a better fit for
your use case. Have a look at Managing Static Grains.

Example:

salt-sproxy -I proxy:user:salt --preview-target

9.5.7 Pillar PCRE

As the pillar targeting, but instead of exact matching, can match on a regular expression on the Pillar value.

Note: This targeting mechanism has the same caveats as the Pillar.

Hint: If you want to target against statically defined Pillar, whenever possible, static Grains may be a better fit for
your use case. Have a look at Managing Static Grains.

Example: match the devices from multiple sites, based on the hostname pattern (e.g., lon1, lon2, etc.)

salt-sproxy -J proxy:host:.*lon\d --preview-target

9.5.8 Compound

You can mix all the matchers above. See https://docs.saltstack.com/en/latest/topics/targeting/compound.html for more
details and notes.

Example: match edge routers 1 and 3 from multiple sites

salt-sproxy -C 'edge[1,3] and G@role:router and P@site:lon\d' net.lldp

9.6 Command Line and Configuration Options

There are a few options specific for salt-sproxy, however you might be already familiar with a vast majority of
them from the salt or salt-run Salt commands.

Hint: Many of the CLI options are available to be configured through the file you can specifiy through the -c
(-config-dir) option, with the difference that in the file you need to use the longer name and underscore instead
of hyphen. For example, the --roster-file option would be configured as roster_file: /path/to/
roster/file in the config file.

--version
Print the version of Salt and Salt SProxy that is running.

9.6. Command Line and Configuration Options 69

https://docs.saltstack.com/en/latest/topics/targeting/compound.html
https://docs.saltstack.com/en/latest/ref/cli/salt.html
https://docs.saltstack.com/en/latest/ref/cli/salt-run.html


salt-sproxy Documentation

--versions-report
Show program’s dependencies and version number, and then exit.

-h, --help
Show the help message and exit.

-c CONFIG_DIR, --config-dir=CONFIG_dir
The location of the Salt configuration directory. This directory contains the configuration files for Salt master
and minions. The default location on most systems is /etc/salt.

--config-dump
New in version 2020.2.0.

Print the complete salt-sproxy configuration values (with the defaults), as YAML.

-t, --timeout
The time in seconds to await for a device to reply. Default: 60 (seconds).

When a device is not replying within this time, it is a good idea to increase the timeout value. The return when the
device is slowly responding is Minion did not return. [No response]. When used in conjunction
with --summary, the device will be counted under # of devices that did not return, but not #
of devices returned. Moreover, salt-sproxy will exit with non-zero code, and the ERROR: Minions
returned with non-zero exit code message will be displayed at the end.

-d, --doc, --documentation
New in version 2020.7.0.

Return the documentation for the module functions available for any Minion flavour. Note, if a specific function
is available only when running under a specific Minion, you’ll need to execute sys.doc instead.

Accepted syntax:

$ salt-sproxy <function> -d

$ salt-sproxy <target> <function> -d

$ salt-sproxy -d

(The latter syntax would return the documentation for all the Minion functions)

Example:

$ salt-sproxy test.ping -d
test.ping:

Used to make sure the minion is up and responding. Not an ICMP ping.

Returns ``True``.

CLI Example:

salt '*' test.ping

-r, --roster
The Roster module to use to compile the list of targeted devices.

--roster-file
Absolute path to the Roster file to load (when the Roster module requires a file). Default: /etc/salt/
roster.

--invasive-targeting
New in version 2020.2.0.

70 Chapter 9. See Also



salt-sproxy Documentation

The native salt-sproxy targeting highly depends on the data your provide mainly through the Roster system (see
also Using the Roster Interface). Through the Roster interface and other mechanisms, you are able to provide
static Grains (see also Managing Static Grains), which you can use in your targeting expressions. There are
situations when you may want to target using more dynamic Grains that you probably don’t want to manage
statically.

In such case, the --invasive-targeting targeting can be helpful as it connects to the device, retrieves
the Grains, then executes the requested command, only on the devices matched by your target.

Important: The maximum set of devices you can query is the devices you have defined in your Roster –
targeting in this case helps you select a subset of the devices salt-sproxy is aware of, based on their properties.

Caution: While this option can be very helpful, bear in mind that in order to retrieve all this data, salt-
sproxy initiates the connection with ALL the devices provided through the Roster interface. That means,
not only that resources consumption is expected to increase, but also the execution time would similarlly be
higher.

--preload-targeting
New in version 2020.2.0.

This is a lighter derivative of the --invasive-targeting option (see above), with the difference that salt-
sproxy is not going to establish the connection with the remote device to gather the data, but will just load
all the possible data without the connection. In other words, you can look at it like a combination of both
--invasive-targeting and -no-connect used together.

This option is useful when the Grains and Pillars you want to use in your targeting expression don’t depend on
the connection with the device itself, but they are dynamically pulled from various systems, e.g., from an HTTP
API, database, etc.

--sync
Deprecated since version 2020.2.0: This option has been replaced by --static (see below).

Whether should return the entire output at once, or for every device separately as they return.

-s, --static
New in version 2020.2.0: Starting with this release, --static, replaces the previous CLI option --sync,
with the same functionality.

Whether should return the entire output at once, or for every device separately as they return.

--async
New in version 2020.7.0.

Instead of waiting for the job to run only print the job id of the started execution and return immediately, while
the job continues to run in the background.

This will only log a warning like: Running in asynchronous mode. Results of this
execution may be collected by attaching to the master event bus or by
examing the master job cache, if configured. This execution is running
under tag salt/run/20200717101228363090.

Tip: If you have the events: true (or --events on the CLI) option enabled, you’ll also see the
individual returns from every device, on the event bus. See Event-Driven Automation and Orchestration for
more information.

9.6. Command Line and Configuration Options 71



salt-sproxy Documentation

--cache-grains
Deprecated since version 2020.10.0: This argument has been defaulted to True, and replaced with
--dont-cache-grains, having a flipped action (i.e., do not attempt to cache the Grains).

Cache the collected Grains. Beware that this option overwrites the existing Grains. This may be helpful when
using the salt-sproxy only, but may lead to unexpected results when running in Mixed Environments. That
said, when running together with --use-existing-proxy, there shouldn’t be any issues, as salt-sproxy
will attemtp to use the existing (Proxy) Minion if any, otherwise it will write the collected Grains to the cache,
which is a safe operation in this case (i.e., it won’t overwrite the Grains of an existing Minion).

--dont-cache-grains
New in version 2020.10.0.

Do not attempt to cache the Grains after execution is complete. This is generally discouraged, particularly if
you want to use the -G or any targeting combination that requires Grains.

--cache-pillar
Deprecated since version 2020.10.0: This argument has been defaulted to True, and replaced with
--dont-cache-pillar, having a flipped action (i.e., do not attempt to cache the Pillar).

Cache the collected Pillar. Beware that this option overwrites the existing Pillar. This may be helpful when
using the salt-sproxy only, but may lead to unexpected results when running in Mixed Environments. That
said, when running together with --use-existing-proxy, there shouldn’t be any issues, as salt-sproxy
will attemtp to use the existing (Proxy) Minion if any, otherwise it will write the compiled Pillar to the cache,
which is a safe operation in this case (i.e., it won’t overwrite the cached Pillar of an existing Minion).

--dont-cache-pillar
New in version 2020.10.0.

Do not attempt to cache the Pillar after execution is complete. This is generally discouraged, particularly if you
want to use the -I or any targeting combination that requires Pillar.

--no-cached-grains
Do not use the cached Grains (i.e., always collect Grains).

--no-cached-pillar
Do not use the cached Pillar (i.e., always re-compile the Pillar).

--no-grains
Do not attempt to collect Grains at all. While it does reduce the runtime, this may lead to unexpected results
when the Grains are referenced in other subsystems.

--no-pillar
Do not attempt to compile Pillar at all. While it does reduce the runtime, this may lead to unexpected results
when the Pillar data is referenced in other subsystems.

-b, --batch, --batch-size
The number of devices to connect to in parallel.

--batch-wait
New in version 2020.2.0.

Wait a specific number of seconds after each batch is done before executing the next one.

-p, --progress
New in version 2020.2.0.

Display a progress graph to visually show the execution of the command across the list of devices.

Note: As of release 2020.2.0, the best experience of using the progress graph is in conjunction with the -s /

72 Chapter 9. See Also



salt-sproxy Documentation

--static option, otherwise there’s a small display issue.

--hide-timeout
New in version 2020.2.0.

Hide devices that timeout.

--failhard
New in version 2020.2.0.

Stop the execution at the first error.

--summary
New in version 2020.2.0.

Display a summary of the command execution:

• Total number of devices targeted.

• Number of devices that returned without issues.

• Number of devices that timed out executing the command. See also -t or --timeout argument to adjust
the timeout value.

• Number of devices with errors (i.e., there was an error while executing the command).

• Number of unreachable devices (i.e., couldn’t establish the connection with the remote device).

In -v / --verbose mode, this output is enahnced by displaying the list of devices that did not return / with
errors / unreachable.

Example:

-------------------------------------------
Summary
-------------------------------------------
# of devices targeted: 10
# of devices returned: 3
# of devices that did not return: 5
# of devices with errors: 0
# of devices unreachable: 2
-------------------------------------------

--show-jid
New in version 2020.2.0.

Display jid without the additional output of –verbose.

-v, --verbose
New in version 2020.2.0.

Turn on command verbosity, display jid, devices per batch, and detailed summary.

--preview-target
Show the devices expected to match the target, without executing any function (i.e., just print the list of devices
matching, then exit).

--sync-roster
Synchronise the Roster modules (both salt-sproxy native and provided by the user in their own environment).
Default: True.

--sync-modules
New in version 2019.10.0.

9.6. Command Line and Configuration Options 73



salt-sproxy Documentation

Load the Execution modules provided together with salt-sproxy. Beware that it may override the Salt native
modules, or your own extension modules. Default: False.

You can also add sync_modules: true into the Master config file, if you want to always ensure that
salt-sproxy is using the Execution modules delivered with this package.

--sync-grains
New in version 2019.10.0.

Synchronise the Grains modules you may have in your own environment.

--sync-all
New in version 2020.2.0.

Load the all extension modules provided with salt-sproxy, as well as your own extension modules from your
environment.

--saltenv
New in version 2020.2.0.

The Salt environment name where to load extension modules and files from.

--events
Whether should put the events on the Salt bus (mostly useful when having a Master running). Default: False.

Important: See Event-Driven Automation and Orchestration for further details.

--use-existing-proxy
Execute the commands on an existing Proxy Minion whenever available. If one or more Minions matched by the
target don’t exist (or the key is not accepted by the Master), salt-sproxy will fallback and execute the command
locally, and, implicitly, initiate the connection to the device locally.

Note: This option requires a Master to be up and running. See Mixed Environments for more information.

Important: When using this option in combination with a Roster, salt-sproxy will firstly try to match
your target based on the provided Roster, and then only after that will execute the Salt function on the targets,
and on the existing Proxy Minions, best efforts. For example, if your target matches two devices, say router1
and switch1, and there’s an available Proxy Minion running for router1, then the Salt function would be
executed on the router1 existing Minion, over the already established connection, while for switch1 the
connection is going to be initialised during run time.

If you want to bypass the Roster matching, and target only existing (Proxy) Minions, make sure you don’t have
the roster or proxy_roster options configured, or execute with -r None, e.g.,

$ salt-sproxy \* --preview-target --use-existing-proxy -r None

The command above would be the equivalent of the following Salt command: salt \*
--preview-target.

--no-connect
New in version 2019.10.0.

Do not initiate the connection with the remote device. Please use this option with care, as it may lead to
unexptected results. The main use case (although not limited to) is executing Salt functions that don’t necessarily
require the connection, however they may need Pillar or Grains that are associated with each individual device.
Such examples include HTTP requests, working with files, and so on. Keep in mind that, as the connection is

74 Chapter 9. See Also



salt-sproxy Documentation

not established, it won’t re-compile fresh Grains, therefore it’ll be working with cached data. Make sure that
the data you have available is already cached before executing with --no-connect, by executing grains.
items and / or pillar.items. The point of this functionality is to speed up the execution when dealing
with a large volume of execution events (either from the CLI or through the The Proxy Runner), and when the
connection is not actually absolutely necessary.

--test-ping
New in version 2019.10.0.

When executing with --use-existing-proxy, you can use this option to verify whether the Minion is
responsive, and only then attempt to send out the command to be executed on the Minion, otherwise executed
the function locally.

Note: Keep in mind that this option generates an additional event on the bus for every execution.

--no-target-cache
New in version 2019.10.0.

Avoid loading the list of targets from the cache.

Changed in version 2020.3.0: This option now defaults to True.

--pillar-root
New in version 2020.2.0.

Set a specific directory as the base pillar root.

--file-root
New in version 2020.2.0.

Set a specific directory as the base file root.

--states-dir
New in version 2020.2.0.

Set a specific directory to search for additional States.

-m, --module-dirs
New in version 2020.2.0.

Specify one or more directories where to load the extension modules from. Multiple directories can be provided
by passing -m or --module-dirs multiple times.

--file-roots, --display-file-roots
Display the location of the salt-sproxy installation, where you can point your file_roots on the Master, to
use the Proxy Runner and other extension modules included in the salt-sproxy package. See also The Proxy
Runner.

--save-file-roots
Save the configuration for the file_roots in the Master configuration file, in order to start using the Proxy
Runner and other extension modules included in the salt-sproxy package. See also The Proxy Runner. This
option is going to add the salt-sproxy installation path to your existing file_roots.

-i, --ignore-host-keys
New in version 2020.10.0.

By default ssh host keys are honored and connections will ask for approval. Use this option to disable
StrictHostKeyChecking.

--no-host-keys
New in version 2020.10.0.

9.6. Command Line and Configuration Options 75



salt-sproxy Documentation

Fully ignores ssh host keys which by default are honored and connections would ask for approval. Useful if the
host key of a remote server has changed and would still error with --ignore-host-keys.

--identities-only
New in version 2020.10.0.

Execute SSH with -o IdentitiesOnly=yes. This option is intended for situations where ssh-agent offers
many different identities and allow ssh to ignore those identities and use the only one specified in options.

--priv
New in version 2020.10.0.

Specify the SSH private key file to be used for authentication.

--priv-passwd
New in version 2020.10.0.

Specify the SSH private key file’s passphrase when required.

9.6.1 Logging Options

Logging options which override any settings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet.
Default: error.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: error.

9.6.2 Target Selection

The default matching that Salt utilizes is shell-style globbing around the minion id. See https://docs.python.org/2/
library/fnmatch.html#module-fnmatch.

See also:

Targeting

-E, --pcre
The target expression will be interpreted as a PCRE regular expression rather than a shell glob.

-L, --list
The target expression will be interpreted as a comma-delimited list; example:
server1.foo.bar,server2.foo.bar,example7.quo.qux

-G, --grain
The target expression matches values returned by the Salt grains system on the minions. The target expression
is in the format of ‘<grain value>:<glob expression>’; example: ‘os:Arch*’

This was changed in version 0.9.8 to accept glob expressions instead of regular expression. To use regular
expression matching with grains, use the –grain-pcre option.

-P, --grain-pcre
The target expression matches values returned by the Salt grains system on the minions. The target expression
is in the format of ‘<grain value>:< regular expression>’; example: ‘os:Arch.*’

76 Chapter 9. See Also

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/fnmatch.html#module-fnmatch


salt-sproxy Documentation

-N, --nodegroup
Use a predefined compound target defined in the Salt master configuration file.

-R, --range
Instead of using shell globs to evaluate the target, use a range expression to identify targets. Range expressions
look like %cluster.

Using the Range option requires that a range server is set up and the location of the range server is referenced
in the master configuration file.

9.6.3 Output Options

--out
Pass in an alternative outputter to display the return of data. This outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, table, and many
others.

Some outputters are formatted only for data returned from specific functions. If an outputter is used that does
not support the data passed into it, then Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the sync option, you will
get a separate JSON string per minion which makes JSON output invalid as a whole. This is due to using an
iterative outputter. So if you want to feed it to a JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outputters that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--out-file-append, --output-file-append
Append the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a ex-
pected future change in configuration.

--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT
Override the configured state_output value for minion output. One of ‘full’, ‘terse’, ‘mixed’, ‘changes’ or ‘filter’.
Default: ‘none’.

--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE
Override the configured state_verbose value for minion output. Set to True or False. Default: none.

9.6. Command Line and Configuration Options 77



salt-sproxy Documentation

9.6.4 Configuration file options

All the previous options can be provided via the CLI, as in-line arguments, as well as configured in the configuration
file. There are however options that are available only through the configuration file:

``target_use_cache_grains``
Whether targeting should look up into the existing cache to compute the list of matching devices. This option
may be particularly useful when using one of the following targeting mechanisms: -G (grain), -P (grain PCRE),
or -C (compound). Default: True (it will check the cache).

``target_use_cache_pillar``
Whether targeting should look up into the existing cache to compute the list of matching devices. This option
may be particularly useful when using one of the following targeting mechanisms: -I (pillar), -J (pillar PCRE),
or -C (compound). Default:: True (it will check the cache).

9.7 Managing remote Unix and Windows machines via SSH

New in version 2020.7.0.

Using salt-sproxy, besides regular Minions, regular Proxy Minions, and standalone Proxy Minions (managed by salt-
sproxy itself), you can also manage arbitrary machines via SSH, in the same way as you’d normally do through salt-ssh.
In fact, this is actually done through the SSH Proxy Module shipped together with this package, which in turn invokes
salt-ssh internals. While salt-ssh has been part of the Salt suite for years, it has always been decoupled from the rest.
One of the evident implications is that you manage some devices by running salt, and others by running salt-ssh.
salt-sproxy aims to abstract that away, and provide a single, uniform methodology for managing whatever flavours of
Salt you want, through the same command and offering the same features.

In essence, using the SSH Proxy Module, salt-sproxy spins up a temporary Proxy Minion locally, which means you
can use it to manage arbitrary machines over SSH, and you can continue using the usual Targeting mechanisms, or
execute Salt commands over the REST API (see also salt-sapi).

Important: As this feature depends on two external modules, provides with salt-sproxy, you will need to make sure
your installation is aware of those. You ave multiple options here:

• Execute passing the --sync-proxy and --sync-executors on the command line.

• Set sync_proxy: true and sync_executors: true in the Master config file.

• Configure the file_roots on the Master, as detailed in The Proxy Runner, then execute salt-run
saltutil.sync_all (or saltutil.sync_proxymodules + saltutil.sync_executors, if
you only want the SSH code, ignorning anything else). See also Salt SProxy Best Practices.

9.7.1 Pillar

The configuration is aligned to the general Proxy Minion standards: put the connection details and credentials under
the proxy key in the Proxy config or Pillar.

host The IP address or the hostname of the remove machine to manage.

port Integer, the port number to use when establishing he connection (defaults to 22).

user The username required for authentication.

passwd The password used for authentication.

priv Absolute path to the private SSH key used for authentication.

78 Chapter 9. See Also

https://docs.saltstack.com/en/latest/topics/ssh/


salt-sproxy Documentation

priv_passwd The SSH private key password.

timeout: 30 The SSH timeout. Defaults to 30 seconds.

sudo: False Execute commands as sudo.

tty: False Connect over tty.

sudo_user The username that should execute the commands as sudo.

remote_port_forwards Enable remote port forwarding. Example: 8888:my.company.server:443.
Multiple remote port forwardings are supported, using comma-separated values, e.g., 8888:my.company.
server:443,9999:my.company.server:80.

identities_only: False Execute SSH with -o IdentitiesOnly=yes. This option is intended for situa-
tions where ssh-agent offers many different identities and allow ssh to ignore those identities and use the only
one specified in options.

ignore_host_keys: False By default ssh host keys are honored and connections will ask for approval. Use
this option to disable StrictHostKeyChecking.

no_host_keys: False Fully ignores ssh host keys which by default are honored and connections would
ask for approval. Useful if the host key of a remote server has changed and would still error with
ignore_host_keys.

winrm: False Flag that tells Salt to connect to a Windows machine. This option requires the saltwinshell to
be installed.

For example, let’s say you put the following in the Pillar:

/srv/salt/pillar/ssh.sls

proxy:
proxytype: ssh
host: srv.example.com
user: test
passwd: test

/srv/salt/pillar/top.sls

base:
srv:
- ssh

Assuming that your configuration is correct, you can then start executing Salt commands as usual, to manage the
remote machine:

$ salt-sproxy 'srv' pkg.install ack
srv:

----------
ack:

----------
new:

2.24-1
old:

libfile-next-perl:
----------
new:

1.16-2
old:

libgdbm-compat4:

(continues on next page)

9.7. Managing remote Unix and Windows machines via SSH 79



salt-sproxy Documentation

(continued from previous page)

----------
new:

1.18.1-4
old:

libgdbm6:
----------
new:

1.18.1-4
old:

libperl5.28:
----------
new:

5.28.1-6
old:

perl:
----------
new:

5.28.1-6
old:

perl-modules-5.28:
----------
new:

5.28.1-6
old:

$ salt-sproxy 'srv' state.apply
srv:
----------

ID: vim
Function: pkg.installed

Result: True
Comment: All specified packages are already installed
Started: 16:38:22.981459

Duration: 57.998 ms
Changes:

----------
ID: ack

Function: pkg.installed
Result: True

Comment: All specified packages are already installed
Started: 16:38:23.039783

Duration: 42.267 ms
Changes:

Summary for sproxy
------------
Succeeded: 2
Failed: 0
------------
Total states run: 2
Total run time: 100.265 ms

9.8 Salt SProxy Best Practices

80 Chapter 9. See Also



salt-sproxy Documentation

Note: This document refers to best practices in regards to optimising the usage of salt-sproxy.

To refer to the Salt best practices concerning the structure of the configuration files, see this document.

In order to simplify the default usage, salt-sproxy tries to load Grains, Roster, and Execution Modules; this adds
an execution overhead everytime you invoke a Salt command through salt-sproxy, of approximatively 0.5s up to 1
second. In some cases, this can be reduced or even removed entirely by configuring one or more of the options below,
depending on your use case.

9.8.1 TL;DR

To speed up the execution, you can add the salt-sproxy installation path to your file_roots settings in the Master
config (see The Proxy Runner for more notes on how to do this), and execute salt-run saltutil.sync_all.
At the same time, add the following in the Master config:

sync_grains: false
sync_roster: false
sync_modules: false

Important: Once you have these settings enabled, while it will speed up the salt-sproxy execution and make it
more efficient, if you have custom Grains or Execution Modules in your own environment, you will need to take care
that they are properly sync’ed on your Master. That is, execute salt-run saltutil.sync_all or equivalent
whenever you update your modules. Examples include: manually execute salt-run saltutil.sync_all (not
recommended), a cron on the same, or if you have a Salt Master running you can have it automatically sync those for
you by adding a scheduled job, e.g.,

schedule:
sync_all:
function: saltutil.sync_all
minutes: 5

The example configuration snippet above would ensure that your custom modules are sync’ed every 5 minutes.

If for some reason you can’t do this for one or more of these modules, check out the recommendations below for each
of them.

9.8.2 salt-sproxy core Runner

Another contributor to the salt-sproxy execution speed is the The Proxy Runner which is the very core of salt-sproxy.
That said, if this Runner is already “well known” to the Salt filesystem, it’ll make it more efficient.

Tip: If you have a Master already running, the execution may be up to 5 seconds faster.

In this case, you will need to follow the notes from The Proxy Runner to update your file_roots settings, and run
salt-run saltutil.sync_runner.

Remember that you’ll need to re-run that in case you re-install salt-sproxy, Salt, or remove the Salt cache.

Of course, you can always have a scheduled job that does it for you, either a cron job, or a scheduled job if you have a
Salt Master running, e.g., re-sync Runners every hour:

9.8. Salt SProxy Best Practices 81

https://docs.saltstack.com/en/latest/topics/best_practices.html
https://docs.saltstack.com/en/latest/topics/jobs/
https://docs.saltstack.com/en/latest/topics/jobs/


salt-sproxy Documentation

schedule:
sync_runners:
function: saltutil.sync_runner
minutes: 60

9.8.3 Disable Grains

If you don’t have any custom Grains modules in your environment, you can disable the load, by configuring
sync_grains: false in your Master configuration file.

Tip: If you do have custom Grains in your environment, you can disable the salt-sproxy automatic sync by adding
sync_grains: false to your Master configuration, and sync the Grains manually or automatically whenever
you update (or create) your modules: salt-run saltutil.sync_grains.

Additionally, disabling the load of some specific Grains modules (whether your own, or natively available in Salt),
may speed up your setup. Configure disable_grains in your Master config, as a list of Grains modules to avoid
loading when executing through salt-sproxy.

Example:

disable_grains:
- esxi

9.8.4 Disable Execution Modules

If you don’t have any custom Execution modules in your own environment, and you don’t make use of the modules
shipped together with salt-sproxy (see execution-modules), you can disable the load by configuring sync_modules:
false in your Master configuration file.

Tip: If you do have custom modules in your environment, you can disable the salt-sproxy automatic sync by adding
sync_modules: false to your Master configuration, and sync the modules manually or automatically when-
ever you update (or create) your modules: salt-run saltutil.sync_modules.

Additionally, disabling the load of some specific Execution modules (whether your own, natively available in Salt, or
provided through salt-sproxy), may speed up your setup. Configure disable_modules in your Master config, as a
list of modules to avoid loading when executing through salt-sproxy.

Example:

disable_modules:
- pip
- statuspage

9.8.5 Disable Roster Sync

If you use one of the Roster modules provided with this package, or from your own sources, salt-sproxy would attempt
to sync only the Roster module you reference in roster: or using the --roster CLI argument. Even so, this may
be time and resource consuming, so it’d may be optimal to disable the default behaviour by setting sync_roster:
false in the Master configuration. Similarly to the previous sections, if you’d like to use a custom module in your
own environment, you can sync them by running salt-run saltutil.sync_roster.

82 Chapter 9. See Also



salt-sproxy Documentation

9.8.6 Disable Events

If you don’t need the Event-Driven Automation and Orchestration, you can gain a few execution seconds by disabling
this so salt-sproxy doesn’t attempt to send execution events to an nonexistent Master (or you simply don’t need / use
those events).

9.8.7 File open limit

As salt-sproxy runs locally, it means it starts the processes and initializes the connection on the local computer. Every
new process creates a process file, and every new connection creates at least one more file as well. That said, depending
on your operating system and configuration, you may hit the hard limit for max open files. For example, on Unix
operating systems, ulimit -Hn will tell you the max open files number. If you hit any issues, consider increasing
this limit.

9.9 The Proxy Runner

The Proxy Runner is the core functionality of salt-sproxy and can be used to trigger jobs as Reactions to external
events, or invoked when Using the Salt REST API.

In both cases mentioned above you are going to need to have a Salt Master running, that allows you to set up the
Reactors and the Salt API; that means, the proxy Runner needs to be available on your Master. To do so, you have
two options:

9.9.1 1. Reference it from the salt-sproxy installation

After installing salt-sproxy, you can execute the following command:

$ salt-sproxy --file-roots
salt-sproxy is installed at: /home/mircea/venvs/salt-sproxy/lib/python3.6/site-
→˓packages/salt_sproxy

You can configure the file_roots on the Master, e.g.,

file_roots:
base:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy

Or only for the Runners:

runner_dirs:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy/_runners

1.a. Update the file_roots and / or runner_dirs manually

As suggested in the output, you can directly reference the salt-sproxy installation path to start using the proxy Runner
(and other extension modules included in the package).

After updating the master configuration file, make sure to execute salt-run saltutil.sync_all or
salt-run saltutil.sync_runners.

9.9. The Proxy Runner 83



salt-sproxy Documentation

1.b. Use the --save-file-roots CLI argument to update the master config

A simpler alternative is executing with --save-file-roots which adds the path for you, and synchronizes the
extension modules provided together with e.g.,

$ salt-sproxy --save-file-roots
/home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy added to the
→˓file_roots:

file_roots:
base:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy

Now you can start using salt-sproxy for event-driven automation, and the Salt REST
→˓API.
See https://salt-sproxy.readthedocs.io/en/latest/salt_api.html
and https://salt-sproxy.readthedocs.io/en/latest/events.html for more details.

Note: While this option will preserve the configuration you have (but appending another path to file_roots and
/ or runner_dirs), it may re-arrange (visually) the contents - however without any side effects.

9.9.2 2. Copy the source file

You can either download it from https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.
py, e.g., if your file_roots configuration on the Master looks like:

file_roots:
base:
- /srv/salt

You are going to need to create a directory under /srv/salt/_runners, then download the proxy Runner there:

$ mkdir -p /srv/salt/_runners
$ curl -o /srv/salt/_runners/proxy.py -L \

https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/salt_sproxy/_
→˓runners/proxy.py

Note: In the above I’ve used the raw like from GitHub to ensure the source code is preserved.

Alternatively, you can also put it under an arbitrary path, e.g., (configuration on the Master)

runner_dirs:
- /path/to/runners

Downloading the proxy Runner under that specific path:

$ curl -o /path/to/runners/proxy.py -L \
https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/salt_sproxy/_

→˓runners/proxy.py

84 Chapter 9. See Also

https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.py
https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.py


salt-sproxy Documentation

9.10 Proxy Modules

9.10.1 SSH Proxy Module

SSH Proxy

Manage a remote host via SSH, using a Proxy Minion. This module doesn’t have any external dependencies, as
it makes use of the native Salt internals used for salt-ssh, therefore managing the remote machine by uploading a
lightweight Salt version on the target host, then invokes Salt functions over SSH (using the ssh binary installed on
your computer or wherever this Proxy Minion runs).

Note: To manage machines running Windows, you will need to install the saltwinshell library.

Pillar

The configuration is aligned to the general Proxy Minion standards: put the connection details and credentials under
the proxy key in the Proxy config or Pillar.

host The IP address or the hostname of the remove machine to manage.

port Integer, the port number to use when establishing he connection (defaults to 22).

user The username required for authentication.

passwd The password used for authentication.

priv Absolute path to the private SSH key used for authentication.

priv_passwd The SSH private key password.

timeout: 30 The SSH timeout. Defaults to 30 seconds.

sudo: False Execute commands as sudo.

tty: False Connect over tty.

sudo_user The username that should execute the commands as sudo.

remote_port_forwards Enable remote port forwarding. Example: 8888:my.company.server:443.
Multiple remote port forwardings are supported, using comma-separated values, e.g., 8888:my.company.
server:443,9999:my.company.server:80.

identities_only: False Execute SSH with -o IdentitiesOnly=yes. This option is intended for situa-
tions where ssh-agent offers many different identities and allow ssh to ignore those identities and use the only
one specified in options.

ignore_host_keys: False By default ssh host keys are honored and connections will ask for approval. Use
this option to disable StrictHostKeyChecking.

no_host_keys: False Fully ignores ssh host keys which by default are honored and connections would
ask for approval. Useful if the host key of a remote server has changed and would still error with
ignore_host_keys.

winrm: False Flag that tells Salt to connect to a Windows machine. This option requires the saltwinshell to
be installed.

Example Pillar:

9.10. Proxy Modules 85



salt-sproxy Documentation

proxy:
proxytype: ssh
host: srv.example.com
user: test
passwd: test
port: 2022

_proxy.ssh.call(fun, *args, **kwargs)
Call an arbitrary Salt function and return the output.

_proxy.ssh.grains()
Invoke grains.items from the thin Salt on the remote machine, in order to return here the Grains.

_proxy.ssh.init(opts)
Init the SSH connection, and execute a simple call to ensure that the remote device is reachable, otherwise throw
an error.

_proxy.ssh.initialized()
Proxy initialized properly?

_proxy.ssh.module_executors()
Return the list of executors that should invoke the Salt functions.

_proxy.ssh.ping()
Execute “echo” on the remote host to ensure it’s still accessible.

_proxy.ssh.shutdown(opts)
Buh-bye. . .

9.11 Event-Driven Automation and Orchestration

9.11.1 Execution Events

Even though salt-sproxy has been designed to be an on-demand executed process (as in opposite to an always
running service), you still have the possibility to monitor what is being executed, and potentially export these events
or trigger a Reactor execution in response.

Note: To be able to have events, you will need to have a Salt Master running, and preferrably using the same Master
configuration file as salt-sproxy, to ensure that they are both sharing the same socket object.

Using the --events option on the CLI (or by configuring events: true in the Master configuration file),
salt-sproxy is going to inject events on the Salt bus as you’re running the usual Salt commands.

For example, running the following command (from the salt-sproxy with network devices example):

$ salt-sproxy juniper-router net.arp --events

Watching the event bus on the Master, you should notice the following events:

$ salt-run state.event pretty=True
20190529143434052740 {

"_stamp": "2019-05-29T14:34:34.053900",
"minions": [

"juniper-router"
]

(continues on next page)

86 Chapter 9. See Also

https://docs.saltstack.com/en/latest/topics/reactor/
http://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html


salt-sproxy Documentation

(continued from previous page)

}
proxy/runner/20190529143434054424/new {

"_stamp": "2019-05-29T14:34:34.055386",
"arg": [],
"fun": "net.arp",
"jid": "20190529143434054424",
"minions": [

"juniper-router"
],
"tgt": "juniper-router",
"tgt_type": "glob",
"user": "mircea"

}
proxy/runner/20190529143434054424/ret/juniper-router {

"_stamp": "2019-05-29T14:34:36.937409",
"fun": "net.arp",
"fun_args": [],
"id": "juniper-router",
"jid": "20190529143434054424",
"return": {

"out": [
{

"interface": "fxp0.0",
"mac": "92:99:00:0A:00:00",
"ip": "10.96.0.1",
"age": 926.0

},
{

"interface": "fxp0.0",
"mac": "92:99:00:0A:00:00",
"ip": "10.96.0.13",
"age": 810.0

},
{

"interface": "em1.0",
"mac": "02:42:AC:13:00:02",
"ip": "128.0.0.16",
"age": 952.0

}
],
"result": true,
"comment": ""

},
"success": true

}

As in the example, above, every execution pushes at least three events:

• Job creation. The tag is the JID of the execution.

• Job payload with the job details, i.e., function name, arguments, target expression and type, matched devices,
etc.

• One separate return event from every device.

A more experienced Salt user may have already noticed that the structure of these events is very similar to the usual
Salt native events when executing a regular command using the usual salt. Let’s take an example for clarity:

9.11. Event-Driven Automation and Orchestration 87



salt-sproxy Documentation

$ salt 'test-minion' test.ping
test-minion:

True

The event bus:

$ salt-run state.event pretty=True
20190529144939496567 {

"_stamp": "2019-05-29T14:49:39.496954",
"minions": [

"test-minion"
]

}
salt/job/20190529144939496567/new {

"_stamp": "2019-05-29T14:49:39.498021",
"arg": [],
"fun": "test.ping",
"jid": "20190529144939496567",
"minions": [

"test-minion"
],
"missing": [],
"tgt": "test-minion",
"tgt_type": "glob",
"user": "sudo_mulinic"

}
salt/job/20190529144939496567/ret/test-minion {

"_stamp": "2019-05-29T14:49:39.905727",
"cmd": "_return",
"fun": "test.ping",
"fun_args": [],
"id": "test-minion",
"jid": "20190529144939496567",
"retcode": 0,
"return": true,
"success": true

}

That said, if you already have Reactors matching Salt events, in order to trigger them in response to salt-
sproxy commands, you would only need to update the tag matching expression (i.e., besides salt/job/
20190529144939496567/new should also match proxy/runner/20190529143434054424/new tags,
etc.).

In the exact same way with other Engine types – if you already have Engines exporting events, they should be able to
export salt-sproxy events as well, which is a great easy win for PCI compliance, and generally to monitor who executes
what.

9.11.2 Reactions to external events

Using the The Proxy Runner, you can configure a Reactor to execute a Salt function on a (network) device in response
to an event.

For example, let’s consider network events from napalm-logs. To import the napalm-logs events on the Salt bus,
simply enable the napalm_syslog Salt Engine on the Master.

In response to an INTERFACE_DOWN notification, say we define the following reaction, in response to
events with the napalm/syslog/*/INTERFACE_DOWN/* pattern (i.e., matching events such as napalm/

88 Chapter 9. See Also

http://napalm-logs.com/en/latest/
https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html
http://napalm-logs.com/en/latest/messages/INTERFACE_DOWN.html


salt-sproxy Documentation

syslog/iosxr/INTERFACE_DOWN/edge-router1, napalm/syslog/junos/INTERFACE_DOWN/
edge-router2, etc.):

/etc/salt/master

reactor:
- 'napalm/syslog/*/INTERFACE_DOWN/*':
- salt://reactor/if_down_shutdown.sls

The salt://reactor/if_down_shutdown.sls translates to /etc/salt/reactor/
if_down_shutdown.sls when /etc/salt is one of the configured file_roots. To apply a configuration
change on the device with the interface down, we can use the _runner.proxy.execute() Runner function:

shutdown_interface:
runner.proxy.execute:
- tgt: {{ data.host }}
- function: net.load_template
- kwarg:

template_name: salt://templates/shut_interface.jinja
interface_name: {{ data.yang_message.interfaces.interface.keys()[0] }}

This Reactor would apply a configuration change as rendered in the Jinja template salt://templates/
shut_interface.jinja (physical path /etc/salt/templates/shut_interface.jinja). Or, to
have an end-to-end overview of the system: when the device sends a notification that one interface is down, in re-
sponse, Salt is automatically going to try and remediate the problem (in the shut_interface.jinja template
you can define the business logic you need). Similarly, you can have other concurrent reactions to the same, e.g. to
send a Slack notification, and email and so on.

For reactions to napalm-logs events specifically, you can continue reading more at https://mirceaulinic.net/
2017-10-19-event-driven-network-automation/ for a more extensive introduction and the napalm-logs documenta-
tion available at https://napalm-logs.readthedocs.io/en/latest/, with the difference that instead of calling a Salt function
directly, you go through the _runner.proxy.execute() or _runner.proxy.execute_devices() Run-
ner functions.

9.12 Using the Salt REST API

To be able to use the Salt HTTP API, similarly to Event-Driven Automation and Orchestration, you will need to have
the Salt Master running, and, of course, also the Salt API service.

As the core functionality if based on the Proxy Runner, check out first the notes from The Proxy Runner to understand
how to have the proxy Runner available on your Master.

The Salt API configuration is unchanged from the usual approaches: see https://docs.saltstack.com/en/latest/ref/netapi/
all/salt.netapi.rest_cherrypy.html how to configure and https://docs.saltstack.com/en/latest/ref/cli/salt-api.html how to
start up the salt-api process.

Suppose we have the following configuration:

/etc/salt/master

rest_cherrypy:
port: 8080
ssl_crt: /etc/pki/tls/certs/localhost.crt
ssl_key: /etc/pki/tls/certs/localhost.key

9.12. Using the Salt REST API 89

https://mirceaulinic.net/2017-10-19-event-driven-network-automation/
https://mirceaulinic.net/2017-10-19-event-driven-network-automation/
https://napalm-logs.readthedocs.io/en/latest/
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html
https://docs.saltstack.com/en/latest/ref/cli/salt-api.html


salt-sproxy Documentation

Hint: Consider looking at the Salt REST API and salt-sapi examples for end-to-end examples on configuring the Salt
API or salt-sapi, however the official Salt documentation should always be used as the reference.

9.12.1 Starting with salt-sproxy 2020.2.0

Beginning with the salt-sproxy release 2020.2.0, the usage has been simplified compared to previous versions, and a
new API client has been added, named sproxy, together with its counter-part sproxy_async for asynchronous
requests.

See also:

salt-sapi

In order to do so, instead of starting the usual salt-api process, you’d need to start a separate application named
salt-sapiwhich is shipped together with salt-sproxy. Everything stay the exact same as usually, the only difference
being the special sproxy and sproxy_async clients for simplified usage.

A major advantage of using the sproxy / sproxy_async clients is that the usage is very similar to the local
/ local_async clients (see https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#usage),
the arguments you’d need to being in-line with the ones from LocalClient: tgt (target expression) and fun (the
name of the Salt function to execute) as mandatory arguments, plus a number of optional arguments documented at
https://salt-sproxy.readthedocs.io/en/latest/runners/proxy.html#_runners.proxy.execute. See an usage example below.

Hint: If you are already using Salt API, and would like to make use of the sproxy / sproxy_async client(s),
you may want to use the salt-sapi instead of the salt-api program, and you’ll be able to use the Salt API as
always, armed with the salt-sproxy clients as well.

Tip: As mentioned in https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#best-practices,

Running asynchronous jobs results in being able to process [. . . ] 17x more commands per second (as the
sproxy_async requests make use of the RunnerClient interface).

Running with sproxy_async will return you a JID with you can then later use to gather the job returns:

Job returns can be fetched from Salt’s job cache via the /jobs/<jid> endpoint, or they can
be collected into a data store using Salt’s Returner system.

See https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#jobs for further de-
tails.

After starting the salt-sapi process, you should get the following:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.3.0
Date: Thu, 02 Jan 2020 23:13:28 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 172

(continues on next page)

90 Chapter 9. See Also

https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#usage
https://docs.saltstack.com/en/latest/ref/clients/index.html#salt.client.LocalClient.cmd
https://salt-sproxy.readthedocs.io/en/latest/runners/proxy.html#_runners.proxy.execute
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#best-practices
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#jobs


salt-sproxy Documentation

(continued from previous page)

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "sproxy", "sproxy_async", "ssh", "wheel", "wheel_async
→˓"]}

That means the salt-sproxy Salt API is ready to receive requests.

Usage examples:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='sproxy' \
-d tgt='minion1' \
-d fun='test.ping'

return:
- minion1: true

$ curl -sS localhost:8080/run -H 'Accept: application/json' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='sproxy_async' \
-d tgt='minion\d' \
-d tgt_type='pcre' \
-d fun='test.ping' \

{"return": [{"tag": "salt/run/20200103001109995573", "jid": "20200103001109995573"}]}

9.12.2 Before salt-sproxy 2020.2.0

After starting the salt-api process, we should get the following:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.1.1
Date: Wed, 05 Jun 2019 07:58:32 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 146

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "ssh", "wheel", "wheel_async"]}

That means the Salt API is ready to receive requests.

To invoke a command on a (network) device managed through Salt, you can use the proxy Runner to invoke com-
mands on, e.g.,

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \

(continues on next page)

9.12. Using the Salt REST API 91



salt-sproxy Documentation

(continued from previous page)

-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='minion1' \
-d function='test.ping' \
-d sync=True

return:
- minion1: true

Note that the execution is at the /run endpoint, with the following details:

• username, password, eauth as configured in the external_auth. See https://docs.saltstack.com/en/
latest/topics/eauth/index.html for more details and how to configure external authentication.

• client is runner, as we’re going to use the proxy Runner.

• fun is the name of the Runner function, in this case _runners.proxy.execute().

• tgt is the Minion ID / device name to target.

• function is the Salt function to execute on the targeted device(s).

• sync is set as True as the execution must be synchronous because we’re waiting for the output to be returned
back over the API. Otherwise, if we only need to invoke the function without expecting an output, we don’t need
to pass this argument.

This HTTP request is the equivalent of CLI from the example salt-sproxy 101:

$ salt-sproxy minion1 test.ping

It works in the same way when execution function on actual devices, for instance when gathering the ARP table
from a Juniper router (the equivalent of the salt-sproxy juniper-router net.arp CLI from the example
salt-sproxy with network devices):

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.arp' \
-d sync=True

return:
- juniper-router:

comment: ''
out:
- age: 891.0

interface: fxp0.0
ip: 10.96.0.1
mac: 92:99:00:0A:00:00

- age: 1001.0
interface: fxp0.0
ip: 10.96.0.13
mac: 92:99:00:0A:00:00

- age: 902.0
interface: em1.0
ip: 128.0.0.16

(continues on next page)

92 Chapter 9. See Also

https://docs.saltstack.com/en/latest/topics/eauth/index.html
https://docs.saltstack.com/en/latest/topics/eauth/index.html


salt-sproxy Documentation

(continued from previous page)

mac: 02:42:AC:12:00:02
result: true

Or when updating the configuration:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.load_config' \
-d text='set system ntp server 10.10.10.1' \
-d test=True \
-d sync=True

return:
- juniper-router:

already_configured: false
comment: Configuration discarded.
diff: '[edit system]

+ ntp {
+ server 10.10.10.1;
+ }'

loaded_config: ''
result: true

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.load_config' \
-d text='set system ntp server 10.10.10.1' \
-d sync=True

return:
- juniper-router:

already_configured: false
comment: ''
diff: '[edit system]

+ ntp {
+ server 10.10.10.1;
+ }'

loaded_config: ''
result: true

You can follow the same methodology with any other Salt function (including States) that you might want to execute
against a device, without having a (Proxy) Minion running.

9.12.3 See Also

salt-sapi

New in version 2020.2.0.

9.12. Using the Salt REST API 93



salt-sproxy Documentation

salt-sapi is a program distributed together with salt-sproxy, to ease the usage of the Salt API by providing two
additional clients: sproxy and sproxy_async.

The usage is the exact same as the native salt-api entry point, just enhanced with the mentioned clients for the
/run URI.

See Using the Salt REST API or https://salt-sproxy.readthedocs.io/en/latest/salt_api.html for more details and usage
examples.

Important: At the time being, salt-sapi is simply available as a Python program entry point, without providing
the system service files. That said, in order for you to use the salt-sapi clients, you wlll need to provide a service
file or edit the one you might have for salt-api already by configuring the path to salt-sapi (run $ which
salt-sapi to find the installation path), e.g., ExecStart=/usr/local/bin/salt-sapi.

Example - start salt-sapi in debug mode:

$ salt-sapi -l debug

See the complete list of options by executing salt-sapi --help:

$ salt-sapi --help
Usage: salt-sapi [options]
salt-sapi is an enhanced Salt API system that provides additional sproxy and
sproxy_async clients, to simplify the usage of salt-sproxy through the Salt
REST API

Options:
--version show program's version number and exit
-V, --versions-report

Show program's dependencies version number and exit.
-h, --help show this help message and exit
-c CONFIG_DIR, --config-dir=CONFIG_DIR

Pass in an alternative configuration directory.
Default: '/etc/salt'.

-d, --daemon Run the salt-sapi as a daemon.
--pid-file=PIDFILE Specify the location of the pidfile. Default:

'/var/run/salt-sapi.pid'.

Logging Options:
Logging options which override any settings defined on the
configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of 'all', 'garbage',
'trace', 'debug', 'profile', 'info', 'warning',
'error', 'critical', 'quiet'. Default: 'warning'.

--log-file=API_LOGFILE
Log file path. Default: '/var/log/salt/api'.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of 'all', 'garbage',
'trace', 'debug', 'profile', 'info', 'warning',
'error', 'critical', 'quiet'. Default: 'warning'.

You can find additional help about salt-sapi issuing "man salt-sapi" or on
https://salt-sproxy.readthedocs.io and
https://docs.saltstack.com/en/latest/ref/cli/salt-api.html.

94 Chapter 9. See Also

https://salt-sproxy.readthedocs.io/en/latest/salt_api.html


salt-sproxy Documentation

9.13 Mixed Environments

When running in a mixed environment (you already have (Proxy) Minions running, and you would also like to use the
salt-sproxy), it is highly recommended to ensure that salt-sproxy is using the same configuration file as your Master,
and the Master is up and running.

Using the --use-existing-proxy option on the CLI, or configuring use_existing_proxy: true in
the Master configuration file, salt-sproxy is going to execute the command on the Minions that are connected to
this Master (and matching your target), otherwise the command is going to be executed locally.

For example, suppose we have two devices, identified as minion1 and minion2, extending the example salt-sproxy
101:

/srv/salt/pillar/top.sls:

base:
'minion*':
- dummy

/srv/salt/pillar/dummy.sls:

proxy:
proxytype: dummy

The Master configuration remains the same:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

Starting up the Master, and the minion1 Proxy:

# start the Salt Master
$ salt-master -d

# start the Proxy Minion for ``minion1``
$ salt-proxy --proxyid minion1 -d

# accept the key of minion1
$ salt-key -y -a minion1

# check that minion1 is now up and running
$ salt minion1 test.ping
minion1:

Test

In a different terminal window, you can start watching the Salt event bus (and leave it open, as I’m going to reference
the events below):

$ salt-run state.event pretty=True
# here you will see the events flowing

Executing the following command, notice that the execution takes place locally (you can identify using the proxy/
runner event tag):

9.13. Mixed Environments 95



salt-sproxy Documentation

$ salt-sproxy -L minion1,minion2 test.ping --events
minion1:

True
minion2:

True

The event bus:

20190603145654312094 {
"_stamp": "2019-06-03T13:56:54.312664",
"minions": [

"minion1",
"minion2"

]
}
proxy/runner/20190603145654313680/new {

"_stamp": "2019-06-03T13:56:54.314249",
"arg": [],
"fun": "test.ping",
"jid": "20190603145654313680",
"minions": [

"minion1",
"minion2"

],
"tgt": [

"minion1",
"minion2"

],
"tgt_type": "list",
"user": "sudo_mircea"

}
proxy/runner/20190603145654313680/ret/minion1 {

"_stamp": "2019-06-03T13:56:54.406816",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603145654313680",
"return": true,
"success": true

}
proxy/runner/20190603145654313680/ret/minion2 {

"_stamp": "2019-06-03T13:56:54.538850",
"fun": "test.ping",
"fun_args": [],
"id": "minion2",
"jid": "20190603145654313680",
"return": true,
"success": true

}

As presented in Event-Driven Automation and Orchestration, there is one event for the job creating, then one for
job start, and one event for each device separately (i.e., proxy/runner/20190603145654313680/ret/
minion1 and proxy/runner/20190603145654313680/ret/minion2, respectively).

Now, if we want to execute the same, but use the already running Proxy Minion for minion1 (started previously),
simply pass the --use-existing-proxy option:

96 Chapter 9. See Also



salt-sproxy Documentation

$ salt-sproxy -L minion1,minion2 test.ping --events --use-existing-proxy
minion2:

True
minion1:

True

In this case, the event bus would look like below:

proxy/runner/20190603150335939481/new {
"_stamp": "2019-06-03T14:03:35.940128",
"arg": [],
"fun": "test.ping",
"jid": "20190603150335939481",
"minions": [

"minion1",
"minion2"

],
"tgt": [

"minion1",
"minion2"

],
"tgt_type": "list",
"user": "sudo_mircea"

}
salt/job/20190603150335939481/new {

"_stamp": "2019-06-03T14:03:36.047971",
"arg": [],
"fun": "test.ping",
"jid": "20190603150335939481",
"minions": [

"minion1"
],
"missing": [],
"tgt": "minion1",
"tgt_type": "glob",
"user": "sudo_mircea"

}
salt/job/20190603150335939481/ret/minion1 {

"_stamp": "2019-06-03T14:03:36.147398",
"cmd": "_return",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603150335939481",
"retcode": 0,
"return": true,
"success": true

}
proxy/runner/20190603150335939481/ret/minion2 {

"_stamp": "2019-06-03T14:03:36.245592",
"fun": "test.ping",
"fun_args": [],
"id": "minion2",
"jid": "20190603150335939481",
"return": true,
"success": true

}

(continues on next page)

9.13. Mixed Environments 97



salt-sproxy Documentation

(continued from previous page)

proxy/runner/20190603150335939481/ret/minion1 {
"_stamp": "2019-06-03T14:03:36.247206",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603150335939481",
"return": true,
"success": true

}

In this sequence of events, you can notice that, in addition to the events from the previous example, there are two addi-
tional events: salt/job/20190603150335939481/new - which is for the job start against the minion1 Proxy
Minion, and salt/job/20190603150335939481/ret/minion1 - which is the return from the minion1
Proxy Minion. The presence of the salt/job event tags proves that the execution goes through the already existing
Proxy Minion.

If you would like to always execute through the available Minions, whenever possible, you can add the following
option to the Master configuration file:

use_existing_proxy: true

9.14 Large Scale Settings

The reference document remains https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html with some small
differences. Note however that if you’re running in Mixed Environments, the notes from the Using Salt at Scale
document must be followed in order to manage a large number of devices (i.e., thousands or tens of thousands).

When running salt-sproxy only - without relying on other existing Minions, it is still highly encour-
aged to use the batch mode when executing: https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#
too-many-minions-returning-at-once Usage example:

$ salt-sproxy '*' state.highstate -b 20

This will only execute on 20 devices at once, while looping through all the targeted devices.

When running in an environment with a Salt Master running and pushing events on the bus as detailed in Execution
Events, targeting a large number of devices may lead to a higher density of events which requires to increase the size
of the event bus and other specific options, e.g., the ZeroMQ high-water mark and backlog - see https://docs.saltstack.
com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings for more details and options.

9.15 Release Notes

9.15.1 Latest Release

2020.10.0

New Features

Added new arguments for the SSH functionality (which are similar to the Salt SSH options with the same naming):

98 Chapter 9. See Also

https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-returning-at-once
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-returning-at-once
https://docs.saltstack.com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings
https://docs.saltstack.com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings


salt-sproxy Documentation

• --ignore-host-keys: By default ssh host keys are honored and connections will ask for approval. Use
this option to disable StrictHostKeyChecking.

• --no-host-keys: Fully ignores ssh host keys which by default are honored and connections would
ask for approval. Useful if the host key of a remote server has changed and would still error with
--ignore-host-keys.

• --identities-only: Execute SSH with -o IdentitiesOnly=yes. This option is intended for situ-
ations where ssh-agent offers many different identities and allow ssh to ignore those identities and use the only
one specified in options.

• --priv: Specify the SSH private key file to be used for authentication.

• --priv-password: Specify the SSH private key file’s passphrase when required.

Any of these CLI arguments can also be provided into the (Master) configuration file as global arguments for all the
Minions, as well as individually, for every Proxy Minion.

Deprecations

The --cache-grains and --cache-pillar CLI arguments have been deprecated, as any Minion managed
through salt-sproxy now caches the Grains and Pillars by default. If you want to prevent this, you can use the new
--dont-cache-grains and / or --dont-cache-pillar options, or simply configure cache_grains:
false and / or cache_pillar: false into the (Master) configuration.

See Command Line and Configuration Options for more details.

Improvements

When using the salt-sapi endpoint for the REST API, in order to have access to the sproxy and sproxy_async
clients over HTTP calls, any configuration option is now passed on to The Proxy Runner.

Bug Fixes

• #176 “custom execution modules not working”.

• #169 “Pillar targeting broken” - which was due to an incorrectly handled caching mechanism. Pillar targeting
should now work well (with the caveats documented in Targeting).

• #179 “using salt-sproxy as a replacement for salt-ssh” - which was fixed in #185. Thanks @dmacvicar!

• #181 “napalm grains not available during template rendering” - fixed via #187.

Questions

I would like to engage the community to discuss around the following question: should enforce (internally) to -t 0
(i.e., wait till the device replies) on state.* functions? #182. Any thoughts would be very welcome, or just a simple
vote would be sufficient.

9.15.2 Previous Releases

Release 2020.7.0

9.15. Release Notes 99

https://github.com/mirceaulinic/salt-sproxy/issues/176
https://github.com/mirceaulinic/salt-sproxy/issues/169
https://github.com/mirceaulinic/salt-sproxy/issues/179
https://github.com/mirceaulinic/salt-sproxy/pull/185
https://github.com/dmacvicar
https://github.com/mirceaulinic/salt-sproxy/issues/181
https://github.com/mirceaulinic/salt-sproxy/pull/187
https://github.com/mirceaulinic/salt-sproxy/issues/182


salt-sproxy Documentation

Explicit return when the Minion is not connected

When using salt-sproxy to execute against running (Proxy) Minions, it may happen sometimes that the Minion is not
available for various reasons (e.g., key accepted, but the service is not fully started, etc.). When this happens, salt-
sproxy now returns an explicit message Minion did not return. [Not connected] for better feedback
on the command line.

Batch targeting using percent

Similar to the Salt batch size targeting, through salt-sproxy you can now divide the target in batches of size relative
to the total number of devices matched by your target. For example, running salt-sproxy -G os:junos -b
20% net.cli "show version" would execute show version on the Junos devices, in 5 groups at a time.

NetBox Roster no longer depending on the NetBox module

In order to reduce the code overlap, the NetBox Roster module included in salt-sproxy has been designed to use code
from the Salt native NetBox module. Due to bugs in older versions of Salt, the NetBox Roster wasn’t properly working,
and starting with this release this dependency has been removed, so the salt-sproxy NetBox Roster works equally well
regardless on the underlying Salt version you’re using.

Merge Pillar/Roster configuration into the Master opts

PR #115 and PR #124 allow one to provide the proxy: block also / only in the Master configuration, which simplifies
the usage as you no longer have to provide any Pillar at all, or, at least, put in the Master configuration the details shared
across your devices, e.g., username, password, proxy type, etc. For example:

/etc/salt/master

proxy:
proxytype: napalm
username: test
password: test

If you’ll want more dynamic data, you’ll have to model that through the Pillar, as that’s far more flexible than the
Master config which is mainly for static data. Up to a degree, however, the Master configuration can be a little bit
more dynamic, by making use of the SDB interface. Example:

# Define the "environ" SDB instance, using the env SDB module:
# https://docs.saltstack.com/en/latest/ref/sdb/all/salt.sdb.env.html

environ:
driver: env

proxy:
proxytype: napalm
username: test
password: sdb://environ/NAPALM_PASS

In the snippet above, the password will be dynamically retrieved from the NAPALM_PASS environment variable, so
the password field will render to that value. In a similar way, using SDB modules, you can gather information from
other resources, making use of other existing SDB modules, e.g., Vault, or YAML using the gpg: true option to
decrypt GPG-encrypted data, or other SDB modules defined in your own environment. For greater flexibility, however,
remember to use the Pillar features.

100 Chapter 9. See Also

https://docs.saltstack.com/en/latest/topics/targeting/batch.html
https://github.com/mirceaulinic/salt-sproxy/pull/115
https://github.com/mirceaulinic/salt-sproxy/pull/124
https://docs.saltstack.com/en/latest/topics/sdb/
https://docs.saltstack.com/en/latest/ref/sdb/all/salt.sdb.vault.html
https://docs.saltstack.com/en/latest/ref/sdb/all/salt.sdb.yaml.html


salt-sproxy Documentation

Optimise the execution speed

By loading only the Proxy module of choice (see PR #143), the execution time has been reduced by 2-3 seconds. In a
similar way, salt-sproxy is now only loading the Roster module referenced (if any) which speeds up a little the initial
startup.

You can further improve the performances in your own environment, by auditing what modules you require and /
or if you make use of any custom modules at all. See also the new page Salt SProxy Best Practices for more detail
recommendations.

Managing remote Unix and Windows machines via SSH

Using salt-sproxy, besides regular Minions, regular Proxy Minions, and standalone Proxy Minions (managed by salt-
sproxy itself), you can now also manage arbitrary machines via SSH, in the same way as you’d normally do through
salt-ssh. In fact, this is actually done through the SSH Proxy Module shipped together with this package, which in
turn invokes salt-ssh internals. While salt-ssh has been part of the Salt suite for years, it has always been decoupled
from the rest. One of the evident implications is that you manage some devices by running salt, and others by
running salt-ssh. salt-sproxy aims to abstract that away, and provide a single, uniform methodology for managing
whatever flavours of Salt you want, through the same command and offering the same features.

The configuration is very simple; for example, you can add the following to your Master configuration file:

/etc/salt/master

proxy:
proxytype: ssh
host: <IP address or hostname>
user: <username>
passwd: <password>

(You can also use SSH keys for authentication, see Managing remote Unix and Windows machines via SSH for more
details, and other available options)

The you can start executing Salt commands as usual:

$ salt-sproxy 'srv' grains.get manufacturer
DigitalOcean

$ salt-sproxy 'srv' state.apply
srv:
----------

ID: vim
Function: pkg.installed

Result: True
Comment: All specified packages are already installed
Started: 16:38:22.981459

Duration: 57.998 ms
Changes:

----------
ID: ack

Function: pkg.installed
Result: True

Comment: All specified packages are already installed
Started: 16:38:23.039783

Duration: 42.267 ms
Changes:

(continues on next page)

9.15. Release Notes 101

https://github.com/mirceaulinic/salt-sproxy/pull/143
https://docs.saltstack.com/en/latest/topics/ssh/


salt-sproxy Documentation

(continued from previous page)

Summary for sproxy
------------
Succeeded: 2
Failed: 0
------------
Total states run: 2
Total run time: 100.265 ms

See also:

Please refer to Managing remote Unix and Windows machines via SSH for further details.

Other changes, enhancements, and bug fixes

• Improve the Grains and Pillar cache loading: PR #117.

• Remove the Grains under the proxy Pillar: PR #114.

• Correct nodegroups definition bug: PR #128.

• Ensure that the execution timeout defaults to 60 seconds: PR #144.

• Fix issue #149: targeting cached pillar data doesn’t appear to be working, in PR #151.

• Added -async CLI argument: PR #155.

• Added -d / --documentation CLI argument to display Minion modules docs: PR #156.

Release 2020.3.0

This release brings a better integration with the existing Salt environment, as well as improved the performance for
the devices managed through salt-sproxy exclusively.

Existing Salt environment

When install salt-sproxy in an environment where you’re usually executing Salt commands from (i.e., typically on
the Salt Master), salt-sproxy allows you to access and run commands against the existing Proxy Minions, or regular
Minions. For example, let’s say you execute the following from your existing Salt setup:

$ salt 'device*' test.ping
device7:

True
device3:

True
device1:

True
device4:

True
device5:

True
device2:

True
device6:

True

102 Chapter 9. See Also

https://github.com/mirceaulinic/salt-sproxy/pull/117
https://github.com/mirceaulinic/salt-sproxy/pull/114
https://github.com/mirceaulinic/salt-sproxy/pull/128
https://github.com/mirceaulinic/salt-sproxy/pull/144
https://github.com/mirceaulinic/salt-sproxy/issues/149
https://github.com/mirceaulinic/salt-sproxy/pull/151
https://github.com/mirceaulinic/salt-sproxy/pull/155
https://github.com/mirceaulinic/salt-sproxy/pull/156


salt-sproxy Documentation

After installing salt-sproxy on the Salt Master (e.g., pip install salt-sproxy), you’ll be able to execute the
following command with the same effect:

$ salt-sproxy 'device*' test.ping --use-existing-proxy
device7:

True
device3:

True
device1:

True
device4:

True
device5:

True
device2:

True
device6:

True

To simplify the usage, you can put the following configuration option into the Salt Master configuration:

/etc/salt/master

use_existing_proxy: true

With this configuration, you can execute the above as: salt-sproxy 'device*' test.ping.

The execution time of the above command is now much faster compared to previous salt-sproxy releases, as it now
invokes internal Salt code sequences, that makes the execution through salt-sproxy the equivalent of using salt
with the -b (batch size) CLI argument.

That said, if you want to continue managing your existing minions (or some of them), as of today, and would like
to manage some additional devices but without spinning up (Proxy) Minions for those, salt-sproxy will allow you do
that. For example, in the networking context, you may want to manage some devices, such as routers, core switches,
etc., using Proxy Minions - but others, more statical, such as console servers, OOB switches, and so on, you may not
want to leverage Proxy Minions for them, and manage them through salt-sproxy. That said, salt-sproxy can help you
benefit from both worlds at the same time: all you have to do is provide a Roster for those you don’t want to spin up
(Proxy) Minions for (see also Using the Roster Interface).

As a quick example, suppose you want to manage device8 and device9, besides device1 . . . device7 from
the example above (which have Minions running). In that case, device8 and device9 would need to be provided
in a Roster - for simplicity, let’s consider the File Roster:

/etc/salt/roster

device8:
proxytype: junos
host: <ip or dns name of host>
username: <username>
password: <secret>

device9:
proxytype: napalm
driver: <napalm driver>
host: <ip or dns name of host>
username: <username>
password: <secret>

device10:
proxytype: netmiko
device_type: mellanox

(continues on next page)

9.15. Release Notes 103



salt-sproxy Documentation

(continued from previous page)

host: <ip or dns name of host>
username: <username>
password: <secret>

In the previous example, device8 would be managed through the junos Proxy module, while device9 using
the NAPALM Proxy module, and device10 using the Netmiko Proxy module - see the documentation of each to
understand what options are required.

In order to load the Roster file above, you will also need to update the Master configuration file:

/etc/salt/master

roster: file
use_existing_proxy: true

With these two files updated, you can now execute:

$ salt-sproxy 'device*' test.ping
device7:

True
device3:

True
device1:

True
device4:

True
device5:

True
device2:

True
device6:

True
device8:

True
device9:

True
device10:

True

Notice that the above uniformly returns the output from the existing Minions as well as those managed through salt-
sproxy exclusively.

Tip: If you’d like to preserve the syntax your users are accustomed to, you may consider replacing /usr/bin/salt
with $(which salt-sproxy), then then syntax remains salt 'device*' test.ping.

Devices managed through salt-sproxy exclusively

There’s no significant change from a functional perspective, however, the experience from the command line, for
devices managed through salt-sproxy exclusively is now improved and the execution is faster, particularly when one
or more devices are unreachable, or that’s an error of another nature. Compared to the previous releases, an execution
against a device starts immediately after the previous one completes - versus before when an entire batch was waiting
for the previous entire batch to complete. As a result, the execution feels more similar to the usual salt command, even
though you don’t manage (Proxy) Minions services per se.

104 Chapter 9. See Also

https://docs.saltstack.com/en/master/ref/proxy/all/salt.proxy.junos.html
https://docs.saltstack.com/en/master/ref/proxy/all/salt.proxy.napalm.html
https://docs.saltstack.com/en/master/ref/proxy/all/salt.proxy.netmiko_px.html


salt-sproxy Documentation

Summary events fired on the event bus

When executing a command with --summary, salt-sproxy not injects an event on the Salt bus (you’ll need to have a
Salt Master running for this). For example, at the end of the execution of the command from the example above, the
following event would be seen on the bus:

proxy/runner/20200318131327481717/summary {
"_stamp": "2020-03-18T13:13:39.321346",
"down_minions": [],
"existing_minions": [

"device1",
"device2",
"device3",
"device4",
"device5",
"device6",
"device7"

],
"failed_minions": [],
"fun": "test.ping",
"fun_args": [],
"jid": "20200318131327481717",
"matched_minions": [

"device1",
"device2",
"device3",
"device4",
"device5",
"device6",
"device7",
"device8",
"device9",
"device10",

],
"sproxy_minions": [

"device8",
"device9",
"device10",

],
"tgt": "device*",
"tgt_type": "glob",
"timeout_minions": [],
"unreachable_devices": [],
"user": "sudo_mulinic"

}

This event provides an event with report for what devices replied, and which are managed through salt-sproxy, etc.,
similar to the CLI summary.

Release 2020.2.0

This is considered the first mature release, with significant improvements around the targeting, new CLI options as
well as other improvements and features.

9.15. Release Notes 105



salt-sproxy Documentation

Static Grains

With this release, static Grains can be configured easier for large (or all) groups of devices by having a grains
section in the Master configuration file, e.g.,

/etc/salt/master

grains:
salt:
role: proxy

For more details check out the new section Managing Static Grains.

Improved targeting

Targeting mechanisms have been revisited and rewrote almost from scratch, for a better user experience similar to
when managing Proxy Minions and executing via the usual salt command.

On this occasion, there are two new CLI options added in this release: --invasive-targeting and
--preload-targeting. The reasoning for adding these is that the native salt-sproxy targeting highly depends
on the data you provide mainly through the Roster system (see also Extension Roster Modules). Through the Roster
interface and other mechanisms, you are able to provide static Grains, which you can use in your targeting expressions.
There are situations when you may want to target using more dynamic Grains that you probably don’t want to manage
statically, which may depend on various attributes retrieved after connecting to the device (e.g., hardware model, OS
version, etc.). In such case, the --invasive-targeting targeting can be helpful as it connects to the device,
retrieves these attributes / Grains, then executes the requested command, only on the devices matched by your target.

--preload-targeting works in a similar way, with the distinction that it doesn’t establish the connection with
the remote device, however your target expression depends on number of attributes retrieved from various systems
depending on each individual device (or group of devices).

Using --invasive-targeting together with --cache-grains and / or --cache-pillar can speed up
the run time when you execute next time (next run would be without --invasive-targeting), as the Grains /
Pillar data is already available and will be used in determining the targets from your expression.

New Roster module: file

Using the new File Roster, you can provide the universe of devices salt-sproxy can possibly manage through an
arbitrary SLS file (therefore this file can be provided in any of the supported format: Jinja+YAML, YAML, JSON,
Python, etc. - see the list of available Renderers for more options). The path to this file defaults to /etc/salt/
roster, or you can override it using the roster_file configuration option (or from the command line using
--roster-file), providing the absolute path.

Example File Roster (as YAML):

/etc/salt/roster

device1:
grains:
site: site1

device2:
grains:
site: site2

Example File Roster (as Jinja+YAML) - manage 100 device, with a simple Jinja + YAML auto-generated Roster:

106 Chapter 9. See Also

https://docs.saltstack.com/en/latest/ref/renderers/


salt-sproxy Documentation

/etc/salt/roster

{%- for i in range(100) %}
device{{ i }}:

grains:
site: site1

{%- endfor %}

Example File Roster (as JSON):

/etc/salt/roster

{
"device1": {
"grains": {

"site": "site1"
}

},
"device2": {
"grains": {

"site": "site1"
}

}
}

Using any of these, you’ll be able to execute salt-sproxy -G site:site1 test.ping (to target all devices
that have the site Grain set as site1) or salt-sproxy 'device*' test.ping, etc.

Tip: Remember that being interpreted as an SLS, you can also invoke Salt functions, using the __salt__ global
variable. For example, to retrieve and build the list of devices dynamically using an HTTP query, you can do, e.g.,

{%- set ret = __salt__.http.query('https://netbox.live/api/dcim/devices/',
→˓decode=true) %}
{%- for device in ret.dict.results %}
{{ device.name }}:
grains:
site: {{ device.site.slug }}

{%- endfor %}

As always, for higher complexity, consider using the pure Python Renderer.

salt-sapi

iIn order to simplify the usage of the REST API calls to devices managed through salt-sproxy, beginning with this
release, there’s an additional program distributed with salt-sproxy, salt-sapi that leverages the usual Salt API
features, and on top, it provides an additional client for sproxy.

Note: That means, instead of starting the usual salt-api, in order to execute REST calls through sproxy, you can
start salt-sapi instead, using the exact same CLI arguments and configuration options. See salt-sapi for further
information.

Example call before this release (without salt-sapi):

9.15. Release Notes 107

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.py.html#module-salt.renderers.py


salt-sproxy Documentation

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='minion1' \
-d function='test.ping' \
-d sync=True

return:
- minion1: true

Example call starting with this release (through salt-sapi):

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='sproxy' \
-d tgt='minion1' \
-d fun='test.ping'

return:
- minion1: true

Notice in the later call the client invoked is sproxy, while the fun field points straight to the Execution Function
you want to execute (as in opposite to a more convoluted usage of both fun and function as previously).

See also:

Check out the salt-sapi example for configuring and using the salt-sapi interface.

New CLI options

New CLI options added in this release, to provide similar functionality to the usual salt command:

--batch-wait: Wait a specific number of seconds after each batch is done before executing the next one.

--hide-timeout: Hide devices that timeout.

--failhard: Stop the execution at the first error.

--progress / -p: Display a progress graph to visually show the execution of the command across the list of devices.

--summary: Display a summary of the command execution:

• Total number of devices targeted.

• Number of devices that returned without issues.

• Number of devices that timed out executing the command. See also -t or --timeout argument
to adjust the timeout value.

• Number of devices with errors (i.e., there was an error while executing the command).

• Number of unreachable devices (i.e., couldn’t establish the connection with the remote device).

In -v / --verbose mode, this output is enahnced by displaying the list of devices that did not return /
with errors / unreachable.

Example:

108 Chapter 9. See Also



salt-sproxy Documentation

-------------------------------------------
Summary
-------------------------------------------
# of devices targeted: 10
# of devices returned: 3
# of devices that did not return: 5
# of devices with errors: 0
# of devices unreachable: 2
-------------------------------------------

--show-jid: Display the JID (Job ID).

--verbose / -v: Turn on command verbosity, display jid, devices per batch, and detailed summary.

--pillar-root: Set a specific directory as the base pillar root.

--states-dir: Set a specific directory to search for additional States.

--module-dirs / -m: Specify one or more directories where to load the extension modules from. Multiple direc-
tories can be provided by passing -m or --module-dirs multiple times.

--saltenv: The Salt environment name where to load extension modules and files from.

--config-dump: Print the complete salt-sproxy configuration values (with the defaults), in YAML format.

Returners

Using the --return, --return-config, and --return-kwargs new CLI options, you can forward the
execution results to various systems such as SQL databases, Slack, Syslog, or NoSQL systems, etc. - see here the list
of natively available Returner modules you can use.

2019.10.0

This release includes several new features:

• Improved the granularity of the options that are loaded from the Roster. As such, this can be used to provide
more specific connection parameters per device (or groups of devices). In other words, if you have one of more
devices that need a more specific, username / password / port / etc. to establish the connection, you can put
those into the Roster.

The available fields that you can use depend on what the Proxy module of choice requires, see https://docs.
saltstack.com/en/latest/ref/proxy/all/index.html and check out the documentation of the Proxy module you’re
using.

You can also override the proxytype value, to use a different Proxy module per device.

For example, if you’re using the Pillar Roster, you would typically have a structure as following:

devices:
- name: device1
- name: device2
- name: device3

Where all three devices would be managed, say using the napalm Proxy module.

Say, if you’d like to change device2 to be managed using the junos Proxy module instead, you can update the
above as:

9.15. Release Notes 109

https://docs.saltstack.com/en/latest/ref/returners/all/index.html#all-salt-returners
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.junos.html


salt-sproxy Documentation

devices:
- name: device1
- name: device2

proxytype: junos
- name: device3

In a similar way, if you require to authenticate to device3 using a different username, you can override that
as:

devices:
- name: device1
- name: device2

proxytype: junos
- name: device3

username: test-username

While the examples above are using the Pillar Roster, they would work in the same way with other Rosters,
such as Ansible Roster, etc.

For a more complete example, make sure to take a look at Quick Start.

• Added --no-connect command line option, to be able to invoke Salt functions without necessarily estab-
lishing the connection with the remote device. See –no-connect for more details.

• New option –test-ping which can be used in combination with –use-existing-proxy to ensure that the ex-
isting (Proxy) Minion is alive / usable, before attempting to execute the command; when non-responsive,
salt-sproxy will try to execute the code locally.

• Starting with this release, when targeting through a Roster, by default, the list of targets determined using your
Roster of choice, is going to be cached locally. To deactivate this behaviour and re-compute the target at every
execution, you can use the –no-target-cache option. This option can also be set in the configuration file as
no_target_cache: false.

• Two new options –sync-grains and –sync-modules to re-sync the Execution or Grain modules that are delivered
with the salt-sproxy package or from your own environment.

Important: If you are using the NetBox Roster, you might want to keep in mind that in Netbox v2.6 the default view
permissions changed, so salt-sproxy may not able to get the device list from Netbox by default.

Add EXEMPT_VIEW_PERMISSIONS = ['*'] to the NetBox configuration.py file to change this behavior.
See https://github.com/netbox-community/netbox/releases/tag/v2.6.0 for more information.

110 Chapter 9. See Also

https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-no-connect
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-test-ping
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-use-existing-proxy
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-no-target-cache
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-sync-grains
https://salt-sproxy.readthedocs.io/en/latest/opts.html#cmdoption-sync-modules
https://github.com/netbox-community/netbox/releases/tag/v2.6.0


Python Module Index

_
_modules.netbox, 42
_proxy.ssh, 85
_roster.ansible, 35
_roster.file, 37
_roster.netbox, 37
_roster.pillar, 37
_runners.proxy, 38

111



salt-sproxy Documentation

112 Python Module Index



Index

Symbols
-async

command line option, 71
-batch-wait

command line option, 72
-cache-grains

command line option, 71
-cache-pillar

command line option, 72
-config-dump

command line option, 70
-dont-cache-grains

command line option, 72
-dont-cache-pillar

command line option, 72
-events

command line option, 74
-failhard

command line option, 73
-file-root

command line option, 75
-file-roots, -display-file-roots

command line option, 75
-force-color

command line option, 77
-hide-timeout

command line option, 73
-identities-only

command line option, 76
-invasive-targeting

command line option, 70
-log-file-level=LOG_LEVEL_LOGFILE

command line option, 76
-log-file=LOG_FILE

command line option, 76
-no-cached-grains

command line option, 72
-no-cached-pillar

command line option, 72

-no-color
command line option, 77

-no-connect
command line option, 74

-no-grains
command line option, 72

-no-host-keys
command line option, 75

-no-pillar
command line option, 72

-no-target-cache
command line option, 75

-out
command line option, 77

-out-file-append, -output-file-append
command line option, 77

-out-file=OUTPUT_FILE,
-output-file=OUTPUT_FILE

command line option, 77
-out-indent OUTPUT_INDENT,

-output-indent OUTPUT_INDENT
command line option, 77

-pillar-root
command line option, 75

-preload-targeting
command line option, 71

-preview-target
command line option, 73

-priv
command line option, 76

-priv-passwd
command line option, 76

-roster-file
command line option, 70

-saltenv
command line option, 74

-save-file-roots
command line option, 75

-show-jid
command line option, 73

113



salt-sproxy Documentation

-state-output=STATE_OUTPUT,
-state_output=STATE_OUTPUT

command line option, 77
-state-verbose=STATE_VERBOSE,

-state_verbose=STATE_VERBOSE
command line option, 77

-states-dir
command line option, 75

-summary
command line option, 73

-sync
command line option, 71

-sync-all
command line option, 74

-sync-grains
command line option, 74

-sync-modules
command line option, 73

-sync-roster
command line option, 73

-test-ping
command line option, 75

-use-existing-proxy
command line option, 74

-version
command line option, 69

-versions-report
command line option, 69

-E, -pcre
command line option, 76

-G, -grain
command line option, 76

-L, -list
command line option, 76

-N, -nodegroup
command line option, 76

-P, -grain-pcre
command line option, 76

-R, -range
command line option, 77

-b, -batch, -batch-size
command line option, 72

-c CONFIG_DIR, -config-dir=CONFIG_dir
command line option, 70

-d, -doc, -documentation
command line option, 70

-h, -help
command line option, 70

-i, -ignore-host-keys
command line option, 75

-l LOG_LEVEL, -log-level=LOG_LEVEL
command line option, 76

-m, -module-dirs
command line option, 75

-p, -progress
command line option, 72

-r, -roster
command line option, 70

-s, -static
command line option, 71

-t, -timeout
command line option, 70

-v, -verbose
command line option, 73

_modules.netbox (module), 42
_proxy.ssh (module), 85
_roster.ansible (module), 35
_roster.file (module), 37
_roster.netbox (module), 37
_roster.pillar (module), 37
_runners.proxy (module), 38
‘‘target_use_cache_grains‘‘

command line option, 78
‘‘target_use_cache_pillar‘‘

command line option, 78

C
call() (in module _proxy.ssh), 86
command line option

-async, 71
-batch-wait, 72
-cache-grains, 71
-cache-pillar, 72
-config-dump, 70
-dont-cache-grains, 72
-dont-cache-pillar, 72
-events, 74
-failhard, 73
-file-root, 75
-file-roots, -display-file-roots, 75
-force-color, 77
-hide-timeout, 73
-identities-only, 76
-invasive-targeting, 70
-log-file-level=LOG_LEVEL_LOGFILE,

76
-log-file=LOG_FILE, 76
-no-cached-grains, 72
-no-cached-pillar, 72
-no-color, 77
-no-connect, 74
-no-grains, 72
-no-host-keys, 75
-no-pillar, 72
-no-target-cache, 75
-out, 77
-out-file-append,

-output-file-append, 77

114 Index



salt-sproxy Documentation

-out-file=OUTPUT_FILE,
-output-file=OUTPUT_FILE, 77

-out-indent OUTPUT_INDENT,
-output-indent OUTPUT_INDENT,
77

-pillar-root, 75
-preload-targeting, 71
-preview-target, 73
-priv, 76
-priv-passwd, 76
-roster-file, 70
-saltenv, 74
-save-file-roots, 75
-show-jid, 73
-state-output=STATE_OUTPUT,

-state_output=STATE_OUTPUT, 77
-state-verbose=STATE_VERBOSE,

-state_verbose=STATE_VERBOSE,
77

-states-dir, 75
-summary, 73
-sync, 71
-sync-all, 74
-sync-grains, 74
-sync-modules, 73
-sync-roster, 73
-test-ping, 75
-use-existing-proxy, 74
-version, 69
-versions-report, 69
-E, -pcre, 76
-G, -grain, 76
-L, -list, 76
-N, -nodegroup, 76
-P, -grain-pcre, 76
-R, -range, 77
-b, -batch, -batch-size, 72
-c CONFIG_DIR,

-config-dir=CONFIG_dir, 70
-d, -doc, -documentation, 70
-h, -help, 70
-i, -ignore-host-keys, 75
-l LOG_LEVEL, -log-level=LOG_LEVEL,

76
-m, -module-dirs, 75
-p, -progress, 72
-r, -roster, 70
-s, -static, 71
-t, -timeout, 70
-v, -verbose, 73
‘‘target_use_cache_grains‘‘, 78
‘‘target_use_cache_pillar‘‘, 78

create_circuit() (in module _modules.netbox), 42

create_circuit_provider() (in module _mod-
ules.netbox), 43

create_circuit_termination() (in module
_modules.netbox), 43

create_circuit_type() (in module _mod-
ules.netbox), 43

create_device() (in module _modules.netbox), 43
create_device_role() (in module _mod-

ules.netbox), 44
create_device_type() (in module _mod-

ules.netbox), 44
create_interface() (in module _modules.netbox),

44
create_interface_connection() (in module

_modules.netbox), 44
create_inventory_item() (in module _mod-

ules.netbox), 45
create_ipaddress() (in module _modules.netbox),

45
create_manufacturer() (in module _mod-

ules.netbox), 45
create_platform() (in module _modules.netbox),

45
create_site() (in module _modules.netbox), 45

D
delete_interface() (in module _modules.netbox),

46
delete_inventory_item() (in module _mod-

ules.netbox), 46
delete_ipaddress() (in module _modules.netbox),

46

E
execute() (in module _runners.proxy), 38
execute_devices() (in module _runners.proxy), 40

F
filter_() (in module _modules.netbox), 46

G
gen_modules() (_runners.proxy.SProxyMinion

method), 38
get_() (in module _modules.netbox), 46
get_circuit_provider() (in module _mod-

ules.netbox), 47
get_interfaces() (in module _modules.netbox), 47
get_ipaddresses() (in module _modules.netbox),

47
grains() (in module _proxy.ssh), 86

I
init() (in module _proxy.ssh), 86

Index 115



salt-sproxy Documentation

initialized() (in module _proxy.ssh), 86

M
make_interface_child() (in module _mod-

ules.netbox), 47
make_interface_lag() (in module _mod-

ules.netbox), 48
module_executors() (in module _proxy.ssh), 86

O
openconfig_interfaces() (in module _mod-

ules.netbox), 48
openconfig_lacp() (in module _modules.netbox),

48

P
ping() (in module _proxy.ssh), 86

S
salt_call() (in module _runners.proxy), 41
shutdown() (in module _proxy.ssh), 86
slugify() (in module _modules.netbox), 48
SProxyMinion (class in _runners.proxy), 38
StandaloneProxy (class in _runners.proxy), 38

T
targets() (in module _roster.ansible), 36
targets() (in module _roster.file), 37
targets() (in module _roster.netbox), 37
targets() (in module _roster.pillar), 38

U
update_device() (in module _modules.netbox), 48
update_interface() (in module _modules.netbox),

49

116 Index


	Why salt-sproxy
	Is salt-sproxy a wrapper around salt-ssh?
	Install
	Quick Start
	Usage
	Docker
	More usage examples
	Extension Modules
	See Also
	Python Module Index
	Index

