
salt-sproxy Documentation

Mircea Ulinic

Sep 30, 2019

Contents

1 Install 3

2 Quick Start 5

3 Usage 7

4 Docker 9

5 More usage examples 11

6 Extension Modules 23

7 See Also 31

Python Module Index 55

Index 57

i

ii

salt-sproxy Documentation

Salt plugin to automate the management and configuration of network devices at scale, without running (Proxy)
Minions.

Using salt-sproxy, you can continue to benefit from the scalability, flexibility and extensibility of Salt, while you
don’t have to manage thousands of (Proxy) Minion services. However, you are able to use both salt-sproxy and
your (Proxy) Minions at the same time.

Note: This is NOT a SaltStack product.

This package may eventually be integrated in a future version of the official Salt releases, in this form or slightly
different.

Contents 1

salt-sproxy Documentation

2 Contents

CHAPTER 1

Install

Install this package where you would like to manage your devices from. In case you need a specific Salt version, make
sure you install it beforehand, otherwise this package will bring the latest Salt version available instead.

The package is distributed via PyPI, under the name salt-sproxy.

Execute:

pip install salt-sproxy

See Installation for more detailed installation notes.

3

salt-sproxy Documentation

4 Chapter 1. Install

CHAPTER 2

Quick Start

See this recording for a live quick start:

In the above, minion1 is a dummy Proxy Minion, that can be used for getting started and make the first steps without
connecting to an actual device, but get used to the salt-sproxy methodology.

The Master configuration file is /home/mircea/master, which is why the command is executed using the
-c option specifying the path to the directory with the configuration file. In this Master configuration file, the
pillar_roots option points to /srv/salt/pillar which is where salt-sproxy is going to load the Pillar
data from. Accordingly, the Pillar Top file is under that path, /srv/salt/pillar/top.sls:

base:
minion1:
- dummy

This Pillar Top file says that the Minion minion1 will have the Pillar data from the dummy.sls from the same
directory, thus /srv/salt/pillar/dummy.sls:

proxy:
proxytype: dummy

In this case, it was sufficient to only set the proxytype field to dummy.

salt-sproxy can be used in conjunction with any of the available Salt Proxy modules, or others that you might
have in your own environment. See https://docs.saltstack.com/en/latest/topics/proxyminion/index.html to understand
how to write a new Proxy module if you require.

For example, let’s take a look at how we can manage a network device through the NAPALM Proxy:

In the above, in the same Python virtual environment as previously make sure you have NAPALM installed, by executing
pip install napalm (see https://napalm.readthedocs.io/en/latest/installation/index.html for further installation
requirements, depending on the platform you’re running on). The connection credentials for the juniper-router
are stored in the /srv/salt/pillar/junos.sls Pillar, and we can go ahead and start executing arbitrary Salt
commands, e.g., net.arp to retrieve the ARP table, or net.load_config to apply a configuration change on the router.

The Pillar Top file in this example was (under the same path as previously, as the Master config was the same):

5

https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.dummy.html
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html
https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://napalm.readthedocs.io/en/latest/installation/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.napalm_network.html#salt.modules.napalm_network.arp
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.napalm_network.html#salt.modules.napalm_network.load_config

salt-sproxy Documentation

base:
juniper-router:
- junos

Thanks to Tesuto for providing the virtual machine for the demos!

6 Chapter 2. Quick Start

https://www.tesuto.com/

CHAPTER 3

Usage

First off, make sure you have the Salt Pillar Top file correctly defined and the proxy key is available into the Pillar.
For more in-depth explanation and examples, check this tutorial from the official SaltStack docs.

Once you have that, you can start using salt-sproxy even without any Proxy Minions or Salt Master running. To
check, can start by executing:

$ salt-sproxy -L a,b,c --preview-target
- a
- b
- c

The syntax is very similar to the widely used CLI command salt, however the way it works is completely different
under the hood:

salt-sproxy <target> <function> [<arguments>]

Usage Example:

$ salt-sproxy cr1.thn.lon test.ping
cr1.thn.lon:

True

One of the most important differences between salt and salt-sproxy is that the former is aware of the devices
available, thanks to the fact that the Minions connect to the Master, therefore salt has the list of targets already
available. salt-sproxy does not have this, as it doesn’t require the Proxy Minions to be up and connected to the
Master. For this reason, you will need to provide it a list of devices, or a Roster file that provides the list of available
devices.

The following targeting options are available:

• -E, --pcre: Instead of using shell globs to evaluate the target servers, use pcre regular expressions.

• -L, --list: Instead of using shell globs to evaluate the target servers, take a comma or space delimited list of
servers.

• -G, --grain: Instead of using shell globs to evaluate the target use a grain value to identify targets, the syntax
for the target is the grain key followed by a globexpression: "os:Arch*".

7

https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html
https://docs.saltstack.com/en/latest/topics/ssh/roster.html

salt-sproxy Documentation

• -P, --grain-pcre: Instead of using shell globs to evaluate the target use a grain value to identify targets,
the syntax for the target is the grain key followed by a pcre regular expression: “os:Arch.*”.

• -N, --nodegroup: Instead of using shell globs to evaluate the target use one of the predefined nodegroups to
identify a list of targets.

• -R, --range: Instead of using shell globs to evaluate the target use a range expression to identify targets.
Range expressions look like %cluster.

Warning: Some of the targeting options above may not be avaialble for some Roster modules.

To use a specific Roster, configure the proxy_roster (or simply roster) option into your Master config file, e.g.,

proxy_roster: ansible

Note: It is recommended to prefer the proxy_roster option in the favour of roster as the latter is used by Salt
SSH. In case you want to use both salt-sproxy and Salt SSH, you may want to use different Roster files, which is why
there are two different options.

salt-sproxy will evauluate both proxy_roster and roster, in this order.

With the configuration above, salt-sproxy would try to use the ansbile Roster module to compile the Roster file
(typically /etc/salt/roster) which is structured as a regular Ansible Inventory file. This inventory should only
provide the list of devices.

The Roster can also be specified on the fly, using the -R or --roster options, e.g., salt-sproxy cr1.thn.
lon test.ping --roster=flat. In this example, we’d be using the flat Roster module to determine the list
of devices matched by a specific target.

When you don’t specify the Roster into the Master config, or from the CLI, you can use salt-sproxy to target on
or more devices using the glob or list target types, e.g., salt-sproxy cr1.thn.lon test.ping (glob)
or salt-sproxy -L cr1.thn.lon,cr2.thn.lon test.ping (to target a list of devices, cr1.thn.lon
and cr2.thn.lon, respectively).

Note that in any case (with or without the Roster), you will need to provide a valid list of Minions.

8 Chapter 3. Usage

https://docs.saltstack.com/en/latest/ref/roster/all/salt.roster.ansible.html#module-salt.roster.ansible
https://docs.saltstack.com/en/latest/ref/roster/all/salt.roster.flat.html#module-salt.roster.flat

CHAPTER 4

Docker

There are Docker images available should you need or prefer: https://hub.docker.com/r/mirceaulinic/salt-sproxy.

You can see here the available tags: https://hub.docker.com/r/mirceaulinic/salt-sproxy/tags. latest provides the
code merged into the master branch, and allinone-latest is the code merged into the master branch with
several libraries such as NAPALM, Netmiko, ciscoconfparse, or Ansible which you may need for your modules or
Roster (if you’d want to use the Ansible Roster, for example).

These can be used in various scenarios. For example, if you would like to use salt-proxy but without installing it,
and prefer to use Docker instead, you can define the following convoluted alias:

alias salt-sproxy='f(){ docker run --rm --network host -v $SALT_PROXY_PILLAR_DIR:/etc/
→˓salt/pillar/ -ti mirceaulinic/salt-sproxy salt-sproxy $@; }; f'

And in the SALT_PROXY_PILLAR_DIR environment variable, you set the path to the directory where you have the
Pillars, e.g.,

export SALT_PROXY_PILLAR_DIR=/path/to/pillars/dir

With this setup, you would be able to go ahead and execute “as normally” (with the difference that the code is executed
inside the container, however from the CLI it won’t look different):

salt-sproxy minion1 test.ping

9

https://hub.docker.com/r/mirceaulinic/salt-sproxy
https://hub.docker.com/r/mirceaulinic/salt-sproxy/tags
https://github.com/napalm-automation/napalm
https://github.com/ktbyers/netmiko
http://www.pennington.net/py/ciscoconfparse/
https://salt-sproxy.readthedocs.io/en/latest/roster/ansible.html

salt-sproxy Documentation

10 Chapter 4. Docker

CHAPTER 5

More usage examples

See the following examples to help getting started with salt-sproxy:

5.1 Usage Examples

5.1.1 salt-sproxy 101

This is the first example from the Quick Start section of the documentation.

Using the Master configuration file under examples/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/master /etc/salt/master
$ cp salt-sproxy/examples/101/pillar/*.sls /srv/salt/pillar/

The contents of these two files:

/srv/salt/pillar/top.sls:

base:
mininon1:
- dummy

/srv/salt/pillar/dummy.sls:

11

https://salt-sproxy.readthedocs.io/en/latest/#quick-start
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/master

salt-sproxy Documentation

proxy:
proxytype: dummy

Having this setup ready, you can go ahead an execute:

$ salt-sproxy minion1 test.ping
minion1:

True

let's display the list of packages installed via pip on this computer
$ salt-sproxy minion1 pip.list
minion1:

Jinja2:

2.10.1
MarkupSafe:

1.1.1
PyNaCl:

1.3.0
PyYAML:

5.1
Pygments:

2.4.0
asn1crypto:

0.24.0
bcrypt:

3.1.6
bleach:

3.1.0
certifi:

2019.3.9
cffi:

1.12.3

5.1.2 Using the Ansible Roster

To be able to use the Ansible Roster, you will need to have ansible installed in the same environment as
salt-sproxy, e.g.,

$ pip instal ansible

Using the Master configuration file under examples/ansible/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

proxy_roster: ansible
roster_file: /etc/salt/roster

Notice that compared to the previous examples, 101 and NAPALM, there are two additional options: roster_file
which specifies the path to the Roster file to use, and proxy_roster that tells how to interpret the Roster file - in
this case, the Roster file /etc/salt/roster is going to be loaded as an Ansible inventory. Let’s consider, for
example, the following Roster / Ansible inventory which you can find at examples/ansible/roster:

12 Chapter 5. More usage examples

https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/ansible/master
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/101
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/napalm
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/ansible/roster

salt-sproxy Documentation

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:

raleigh:
hosts:
edge1.raleigh:

southwest:
children:
san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/ansible/master /etc/salt/master
$ cp salt-sproxy/examples/ansible/roster /etc/salt/roster
$ cp salt-sproxy/examples/ansible/pillar/*.sls /srv/salt/pillar/

The contents of these files:

/srv/salt/pillar/top.sls:

base:
'edge1*':
- junos

'edge2*':
- eos

With this top file, Salt is going to load the Pillar data from /srv/salt/pillar/junos.sls for edge1.
seattle, edge1.atlanta, edge1.raleigh, edge1.sfo, and edge1.la, while loading the data from
/srv/salt/pillar/eos.sls for edge2.atlanta (and anything that would match the edge2* expression
should you have others).

/srv/salt/pillar/junos.sls:

5.1. Usage Examples 13

salt-sproxy Documentation

proxy:
proxytype: napalm
driver: junos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

/srv/salt/pillar/eos.sls:

proxy:
proxytype: napalm
driver: eos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note that in both case the hostname has been set as {{ opts.id | replace('.', '-') }}.
salt-sproxy.digitalocean.cloud.tesuto.com. opts.id points to the Minion ID, which means that
the Pillar data is rendered depending on the name of the device; therefore, the hostname for edge1.atlanta
will be edge1-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, the hostname for edge2.
atlanta is edge2-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, and so on.

Having this setup ready, you can go ahead an execute:

$ salt-sproxy '*' --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo

get the LLDP neighbors from all the edge devices
$ salt-sproxy 'edge*' net.lldp
edge1.vancouver:

~~~ snip ~~~
edge1.atlanta:

~~~ snip ~~~
edge1.sfo:

~~~ snip ~~~
edge1.seattle:

~~~ snip ~~~
edge1.la:

~~~ snip ~~~
edge1.raleigh:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

5.1.3 salt-sproxy with network devices

This is the second example from the Quick Start section of the documentation.

To be able to use this example, make sure you have NAPALM installed - see the complete installation notes from
https://napalm.readthedocs.io/en/latest/installation/index.html.

14 Chapter 5. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/#quick-start
https://napalm.readthedocs.io/en/latest/installation/index.html


salt-sproxy Documentation

Using the Master configuration file under examples/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/master /etc/salt/master
$ cp salt-sproxy/examples/napalm/pillar/*.sls /srv/salt/pillar/

The contents of these two files:

/srv/salt/pillar/top.sls:

base:
juniper-router:
- junos

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: juniper.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Having this setup ready, after you update the connection details, you can go ahead an execute:

$ salt-sproxy juniper-router test.ping
juniper-router:

True

# retrieve the ARP table from juniper-router
$ salt-sproxy juniper-router net.arp
juniper-router:

----------
comment:
out:

|_
----------
age:

849.0
interface:

fxp0.0
ip:

10.96.0.1
mac:

92:99:00:0A:00:00
|_
----------
age:

(continues on next page)

5.1. Usage Examples 15

https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/master


salt-sproxy Documentation

(continued from previous page)

973.0
interface:

fxp0.0
ip:

10.96.0.13
mac:

92:99:00:0A:00:00
|_
----------
age:

738.0
interface:

em1.0
ip:

128.0.0.16
mac:

02:42:AC:13:00:02
result:

True

# apply a configuration change: dry run
$ salt-sproxy juniper-router net.load_config text='set system ntp server 10.10.10.1'
→˓test=True
juniper-router:

----------
already_configured:

False
comment:

Configuration discarded.
diff:

[edit system]
+ ntp {
+ server 10.10.10.1;
+ }

loaded_config:
result:

True

# apply the configuration change and commit
$ salt-sproxy juniper-router net.load_config text='set system ntp server 10.10.10.1'
juniper-router:

----------
already_configured:

False
comment:
diff:

[edit system]
+ ntp {
+ server 10.10.10.1;
+ }

loaded_config:
result:

True

If you run into issues when connecting to your device, you might want to go through this checklist: https://github.com/
napalm-automation/napalm#faq.

16 Chapter 5. More usage examples

https://github.com/napalm-automation/napalm#faq
https://github.com/napalm-automation/napalm#faq


salt-sproxy Documentation

Note: For a better methodology on managing the configuration, you might want to take a look at the State system,
one of the most widely used State modules for configuration management through NAPALM being Netconfig.

5.1.4 Using the NetBox Roster

To be able to use the NetBox Roster, you will need to have the pynetbox library installed in the same environment
as salt-sproxy, e.g.,

$ pip instal pynetbox

Using the Master configuration file under examples/netbox/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

proxy_roster: netbox

netbox:
url: https://url-to-your-netbox-instance

With this configuration, the list of devices is going to be loaded from NetBox, with the connection details provides
under the netbox key.

Note: To set up a NetBox instance, see the installation notes from https://netbox.readthedocs.io/en/stable/installation/.

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/netbox/master /etc/salt/master
$ cp salt-sproxy/examples/netbox/pillar/*.sls /srv/salt/pillar/

The contents of these files highly depend on the device names you have in your NetBox instance. The following
examples are crafted for device name starting with edge1 and edge2, e.g., edge1.atlanta, edge1.seattle
etc. If you have different device names in your NetBox instance, you’ll have to update these Pillars.

/srv/salt/pillar/top.sls:

base:
'edge1*':
- junos

'edge2*':
- eos

With this top file, Salt is going to load the Pillar data from /srv/salt/pillar/junos.sls for edge1.
seattle, edge1.atlanta, edge1.raleigh, edge1.sfo, and edge1.la, while loading the data from
/srv/salt/pillar/eos.sls for edge2.atlanta (and anything that would match the edge2* expression
should you have others).

/srv/salt/pillar/junos.sls:

5.1. Usage Examples 17

https://docs.saltstack.com/en/getstarted/fundamentals/states.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.netconfig.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/netbox/master
https://netbox.readthedocs.io/en/stable/installation/


salt-sproxy Documentation

proxy:
proxytype: napalm
driver: junos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

/srv/salt/pillar/eos.sls:

proxy:
proxytype: napalm
driver: eos
host: {{ opts.id | replace('.', '-') }}.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note that in both case the hostname has been set as {{ opts.id | replace('.', '-') }}.
salt-sproxy.digitalocean.cloud.tesuto.com. opts.id points to the Minion ID, which means that
the Pillar data is rendered depending on the name of the device; therefore, the hostname for edge1.atlanta
will be edge1-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, the hostname for edge2.
atlanta is edge2-atlanta.salt-sproxy.digitalocean.cloud.tesuto.com, and so on.

Having this setup ready, you can go ahead an execute:

$ salt-sproxy '*' --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo
~~~ many others ~~~

get the LLDP neighbors from all the edge devices
$ salt-sproxy 'edge*' net.lldp
edge1.vancouver:

~~~ snip ~~~
edge1.atlanta:

~~~ snip ~~~
edge1.sfo:

~~~ snip ~~~
edge1.seattle:

~~~ snip ~~~
edge1.la:

~~~ snip ~~~
edge1.raleigh:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

5.1.5 Using the Pillar Roster

You can thing of the Pillar Roster as a Roster that loads the list of devices / inventory dynamically using the Pillar
subsystem. Or, in simpler words, you can use any of these features from here: https://docs.saltstack.com/en/latest/
ref/pillar/all/index.html to load the list of your devices, including: JSON / YAML HTTP API, load from MySQL

18 Chapter 5. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/roster/pillar.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html


salt-sproxy Documentation

/ Postgres database, LDAP, Redis, MongoDB, etcd, Consul, and many others; needless to say that this is another
pluggable interface and, in case you have a more specific requirement, you can easily extend Salt in your environment
by providing another Pillar module under the salt://_pillar directory. For example, see this old yet still accurate
article: https://medium.com/@Drew_Stokes/saltstack-extending-the-pillar-494d41ee156d.

The core idea is that you are able to use the data pulled via the Pillar modules once you are able to execute the following
command and see the list of devices you’re aiming to manage:

$ salt-run pillar.show_pillar
devices:

- name: device1
...

It really doesn’t matter where is Salt pulling this data from.

By default, the Pillar Roster is going to check the Pillar data for * (any Minion), and load it from the devices
key. In other words, when executing salt-sproxy pillar.show_pillar the output should have at least the
devices key. To use different settings, have a look at the documentation: Pillar Roster.

Say we want to pull the list of devices from an HTTP API module providing the data in JSON format. In this case, we
can use the http_json module.

If the data is available at http://example.com/devices, and you can verify, e.g., using curl:

$ curl http://example.com/devices
{"devices": [{"name": "router1"}, {"name": "router2"}, {"name": "switch1"}]}

That being available, we can configure the http_json External Pillar:

/etc/salt/master:

roster: pillar

ext_pillar:
- http_json:

url: http://example.com/devices

Now, let’s verify that the data is pulled properly into the Pillar:

$ salt-run pillar.show_pillar
devices:

- name: router1
- name: router2
- name: switch1

That being validated, salt-sproxy is now aware of all the devices to be managed:

$ salt-sproxy \* --preview-target
- router1
- router2
- switch1

As well as other target types such as list or PCRE:

# target a fixed list of devices:

$ salt-sproxy -L router1,router2 --preview-target
- router1
- router2

(continues on next page)

5.1. Usage Examples 19

https://medium.com/@Drew_Stokes/saltstack-extending-the-pillar-494d41ee156d
https://docs.saltstack.com/en/latest/ref/pillar/all/salt.pillar.http_json.html#module-salt.pillar.http_json
http://example.com/devices


salt-sproxy Documentation

(continued from previous page)

# target all devices with the name starting with "router",
# followed by one or more numbers:

$ salt-sproxy -E 'router\d+' --preview-target
- router1
- router2

The same methodology applies to any of the other External Pillar modules.

5.1.6 Salt REST API

Important: In the configuration examples below, for simplicity, I’ve used the auto external authentication, and
disabled the SSL for the Salt API. This setup is highly discouraged in production.

Using the Master configuration file under examples/salt_api/master:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

file_roots:
base:
- /srv/salt/extmods

rest_cherrypy:
port: 8080
disable_ssl: true

external_auth:
auto:
'*':
- '@runner'

The pillar_roots option points to /srv/salt/pillar, so to be able to use this example, either create a
symlink to the pillar directory in this example, or copy the files. For example, if you just cloned this repository:

$ mkdir -p /srv/salt/pillar
$ git clone git@github.com:mirceaulinic/salt-sproxy.git
$ cp salt-sproxy/examples/salt_api/master /etc/salt/master
$ cp salt-sproxy/examples/salt_api/pillar/*.sls /srv/salt/pillar/

The contents of Pillar files:

/srv/salt/pillar/top.sls:

base:
mininon1:
- dummy

juniper-router:
- junos

/srv/salt/pillar/dummy.sls:

20 Chapter 5. More usage examples

https://docs.saltstack.com/en/latest/ref/auth/all/salt.auth.auto.html
https://github.com/mirceaulinic/salt-sproxy/tree/master/examples/salt_api/master


salt-sproxy Documentation

proxy:
proxytype: dummy

/srv/salt/pillar/junos.sls:

proxy:
proxytype: napalm
driver: junos
host: juniper.salt-sproxy.digitalocean.cloud.tesuto.com
username: test
password: t35t1234

Note: The top.sls, dummy.sls, and junos.sls are a combination of the previous examples, 101 and napalm,
which is going to allow use to execute against both the dummy device and a real network device.

In the example Master configuration file above, there’s also a section for the file_roots. As documented in The
Proxy Runner section of the documentation, you are going to reference the proxy Runner, e.g.

$ mkdir -p /srv/salt/extmods/_runners
$ cp salt-sproxy/salt_sproxy/_runners/proxy.py /srv/salt/extmods/_runners/

Or symlink:

$ ln -s /path/to/git/clone/salt-sproxy/salt_sproxy /srv/salt/extmods

With the rest_cherrypy section, the Salt API will be listening to HTTP requests over port 8080, and SSL being
disabled (not recommended in production):

rest_cherrypy:
port: 8080
disable_ssl: true

One another part of the configuration is the external authentication:

external_auth:
auto:
'*':
- '@runner'

This grants access to anyone to execute any Runner (again, don’t do this in production).

With this setup, we can start the Salt Master and the Salt API (running in background):

$ salt-master -d
$ salt-api -d

To verify that the REST API is ready, execute:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.1.1
Date: Wed, 05 Jun 2019 07:58:32 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *

(continues on next page)

5.1. Usage Examples 21

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runner.html
https://salt-sproxy.readthedocs.io/en/latest/runners/proxy.html


salt-sproxy Documentation

(continued from previous page)

Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 146

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "ssh", "wheel", "wheel_async"]}

Now we can go ahead and execute the CLI command from example 101, by making an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='minion1' \
-d function='test.ping' \
-d sync=True

return:
- minion1: true

Notice that eauth field in this case is auto as this is what we’ve configured in the external_auth on the Master.

Similarly, you can now execute the Salt functions from the NAPALM example, against a network device, by making
an HTTP request:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='auto' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.arp' \
-d sync=True

return:
- juniper-router:

comment: ''
out:
- age: 891.0

interface: fxp0.0
ip: 10.96.0.1
mac: 92:99:00:0A:00:00

- age: 1001.0
interface: fxp0.0
ip: 10.96.0.13
mac: 92:99:00:0A:00:00

- age: 902.0
interface: em1.0
ip: 128.0.0.16
mac: 02:42:AC:12:00:02

result: true

22 Chapter 5. More usage examples

https://salt-sproxy.readthedocs.io/en/latest/examples/101.html
https://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html


CHAPTER 6

Extension Modules

salt-sproxy is delivered together with a few extension modules that are dynamically loaded and immediately
available. Please see below the documentation for these modules:

6.1 Extension Roster Modules

6.1.1 Ansible Roster

Read in an Ansible inventory file or script

Flat inventory files should be in the regular ansible inventory format.

[servers]
salt.gtmanfred.com ansible_ssh_user=gtmanfred ansible_ssh_host=127.0.0.1 ansible_ssh_
→˓port=22 ansible_ssh_pass='password'

[desktop]
home ansible_ssh_user=gtmanfred ansible_ssh_host=12.34.56.78 ansible_ssh_port=23
→˓ansible_ssh_pass='password'

[computers:children]
desktop
servers

[names:vars]
http_port=80

then salt-ssh can be used to hit any of them

[~]# salt-ssh -N all test.ping
salt.gtmanfred.com:

True
home:

(continues on next page)

23



salt-sproxy Documentation

(continued from previous page)

True
[~]# salt-ssh -N desktop test.ping
home:

True
[~]# salt-ssh -N computers test.ping
salt.gtmanfred.com:

True
home:

True
[~]# salt-ssh salt.gtmanfred.com test.ping
salt.gtmanfred.com:

True

There is also the option of specifying a dynamic inventory, and generating it on the fly

#!/bin/bash
echo '{

"servers": [
"salt.gtmanfred.com"

],
"desktop": [
"home"

],
"computers": {
"hosts": [],
"children": [

"desktop",
"servers"

]
},
"_meta": {
"hostvars": {

"salt.gtmanfred.com": {
"ansible_ssh_user": "gtmanfred",
"ansible_ssh_host": "127.0.0.1",
"ansible_sudo_pass": "password",
"ansible_ssh_port": 22

},
"home": {

"ansible_ssh_user": "gtmanfred",
"ansible_ssh_host": "12.34.56.78",
"ansible_sudo_pass": "password",
"ansible_ssh_port": 23

}
}

}
}'

This is the format that an inventory script needs to output to work with ansible, and thus here.

[~]# salt-ssh --roster-file /etc/salt/hosts salt.gtmanfred.com test.ping
salt.gtmanfred.com:

True

Any of the [groups] or direct hostnames will return. The ‘all’ is special, and returns everything.

_roster.ansible.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from the ansible inventory_file Default: /etc/salt/roster

24 Chapter 6. Extension Modules



salt-sproxy Documentation

6.1.2 NetBox Roster

Load devices from NetBox, and make them available for salt-ssh or salt-sproxy (or any other program that doesn’t
require (Proxy) Minions running).

Make sure that the following options are configured on the Master:

netbox:
url: <NETBOX_URL>
token: <NETBOX_USERNAME_API_TOKEN (OPTIONAL)>
keyfile: </PATH/TO/NETBOX/KEY (OPTIONAL)>

If you want to pre-filter the devices, so it won’t try to pull the whole database available in NetBox, you can configure
another key, filters, under netbox, e.g.,

netbox:
url: <NETBOX_URL>
filters:
site: <SITE>
status: <STATUS>

Hint: You can use any NetBox field as a filter.

_roster.netbox.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from NetBox.

6.1.3 Pillar Roster

Load the list of devices from the Pillar.

Simply configure the roster option to point to this module, while making sure that the data is available. As the
Pillar is data associated with a specific Minion ID, you may need to ensure that the Pillar is correctly associated with
the Minion configured (default *), under the exact key required (default devices). To adjust these options, you can
provide the following under the roster_pillar option in the Master configuration:

minion_id: * The ID of the Minion to compile the data for. Default: * (any Minion).

pillar_key: devices The Pillar field to pull the list of devices from. Default: devices.

saltenv: base The Salt environment to use when compiling the Pillar data.

pillarenv The Pillar environment to use when compiling the Pillar data.

Configuration example:

roster: pillar
roster_pillar:

minion_id: sproxy
pillar_key: minions

With the following configuration, when executing salt-run pillar.show_pillar sproxy you should have
under minions the list of devices / Minions you want to manage.

Hint: The Pillar data can either be provided as files, or using one or more External Pillars. Check out https:
//docs.saltstack.com/en/latest/ref/pillar/all/index.html for the complete list of available Pillar modules you can use.

6.1. Extension Roster Modules 25

https://github.com/digitalocean/netbox
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html


salt-sproxy Documentation

_roster.pillar.targets(tgt, tgt_type=’glob’, **kwargs)
Return the targets from External Pillar requested.

6.2 Extension Runners

6.2.1 Proxy Runner

Salt Runner to invoke arbitrary commands on network devices that are not managed via a Proxy or regular Minion.
Therefore, this Runner doesn’t necessarily require the targets to be up and running, as it will connect to collect the
Grains, compile the Pillar, then execute the commands.

class _runners.proxy.SProxyMinion(opts)
Create an object that has loaded all of the minion module functions, grains, modules, returners etc. The SProx-
yMinion allows developers to generate all of the salt minion functions and present them with these functions for
general use.

gen_modules(initial_load=False)
Tell the minion to reload the execution modules.

CLI Example:

salt '*' sys.reload_modules

class _runners.proxy.StandaloneProxy(opts)

_runners.proxy.execute(tgt, function=None, tgt_type=’glob’, roster=None, preview_target=False,
target_details=False, timeout=60, with_grains=True, with_pillar=True,
preload_grains=True, preload_pillar=True, default_grains=None, de-
fault_pillar=None, args=(), batch_size=10, sync=False, events=True,
cache_grains=False, cache_pillar=False, use_cached_grains=True,
use_cached_pillar=True, use_existing_proxy=False, **kwargs)

Invoke a Salt function on the list of devices matched by the Roster subsystem.

tgt The target expression, e.g., * for all devices, or host1,host2 for a list, etc. The tgt_list argument
must be used accordingly, depending on the type of this expression.

function The name of the Salt function to invoke.

tgt_type: glob The type of the tgt expression. Choose between: glob (default), list, pcre, rage, or
nodegroup.

roster: None The name of the Roster to generate the targets. Alternatively, you can specify the name of the
Roster by configuring the proxy_roster option into the Master config.

preview_target: False Return the list of Roster targets matched by the tgt and tgt_type arguments.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

with_grains: True Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

26 Chapter 6. Extension Modules



salt-sproxy Documentation

arg The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

batch_size: 10 The size of each batch to execute.

sync: False Whether to return the results synchronously (or return them as soon as the device replies).

events: True Whether should push events on the Salt bus, similar to when executing equivalent through the
salt command.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: False Cache the compiled Pillar data before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

cache_grains: False Cache the collected Grains before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

CLI Example:

salt-run proxy.execute_roster edge* test.ping
salt-run proxy.execute_roster junos-edges test.ping tgt_type=nodegroup

_runners.proxy.execute_devices(minions, function, with_grains=True, with_pillar=True,
preload_grains=True, preload_pillar=True, de-
fault_grains=None, default_pillar=None, args=(),
batch_size=10, sync=False, tgt=None, tgt_type=None,
jid=None, events=True, cache_grains=False,
cache_pillar=False, use_cached_grains=True,
use_cached_pillar=True, use_existing_proxy=False, **kwargs)

Execute a Salt function on a group of network devices identified by their Minion ID, as listed under the
minions argument.

minions A list of Minion IDs to invoke function on.

function The name of the Salt function to invoke.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

with_grains: False Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

6.2. Extension Runners 27



salt-sproxy Documentation

preload_pillar: True Whether to preload Pillar data before opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

args The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

batch_size: 10 The size of each batch to execute.

sync: False Whether to return the results synchronously (or return them as soon as the device replies).

events: True Whether should push events on the Salt bus, similar to when executing equivalent through the
salt command.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: False Cache the compiled Pillar data before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

cache_grains: False Cache the collected Grains before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

CLI Example:

salt-run proxy.execute "['172.17.17.1', '172.17.17.2']" test.ping driver=eos
→˓username=test password=test123

_runners.proxy.salt_call(minion_id, function=None, with_grains=True, with_pillar=True,
preload_grains=True, preload_pillar=True, default_grains=None,
default_pillar=None, cache_grains=False, cache_pillar=False,
use_cached_grains=True, use_cached_pillar=True,
use_existing_proxy=False, jid=None, args=(), **kwargs)

Invoke a Salt Execution Function that requires or invokes an NAPALM functionality (directly or indirectly).

minion_id: The ID of the Minion to compile Pillar data for.

function The name of the Salt function to invoke.

preload_grains: True Whether to preload the Grains before establishing the connection with the remote net-
work device.

default_grains: Dictionary of the default Grains to make available within the functions loaded.

28 Chapter 6. Extension Modules



salt-sproxy Documentation

with_grains: True Whether to load the Grains modules and collect Grains data and make it available inside
the Execution Functions. The Grains will be loaded after opening the connection with the remote network
device.

preload_pillar: True Whether to preload Pillar data before opening the connection with the remote network
device.

default_pillar: Dictionary of the default Pillar data to make it available within the functions loaded.

with_pillar: True Whether to load the Pillar modules and compile Pillar data and make it available inside the
Execution Functions.

use_cached_pillar: True Use cached Pillars whenever possible. If unable to gather cached data, it falls back
to compiling the Pillar.

use_cached_grains: True Use cached Grains whenever possible. If unable to gather cached data, it falls back
to collecting Grains.

cache_pillar: False Cache the compiled Pillar data before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

cache_grains: False Cache the collected Grains before returning.

Warning: This option may be dangerous when targeting a device that already has a Proxy Minion
associated, however recommended otherwise.

use_existing_proxy: False Use the existing Proxy Minions when they are available (say on an already run-
ning Master).

jid: None The JID to pass on, when executing.

arg The list of arguments to send to the Salt function.

kwargs Key-value arguments to send to the Salt function.

CLI Example:

salt-run proxy.salt_call bgp.neighbors junos 1.2.3.4 test test123
salt-run proxy.salt_call net.load_config junos 1.2.3.4 test test123 text='set
→˓system ntp peer 1.2.3.4'

6.2. Extension Runners 29



salt-sproxy Documentation

30 Chapter 6. Extension Modules



CHAPTER 7

See Also

7.1 Command Line and Configuration Options

There are a few options specific for salt-sproxy, however you might be already familiar with a vast majority of
them from the salt or salt-run Salt commands.

Hint: Many of the CLI options are available to be configured through the file you can specifiy through the -c
(-config-dir) option, with the difference that in the file you need to use the longer name and underscore instead
of hyphen. For example, the --roster-file option would be configured as roster_file: /path/to/
roster/file in the config file.

--version
Print the version of Salt and Salt SProxy that is running.

--versions-report
Show program’s dependencies and version number, and then exit.

-h, --help
Show the help message and exit.

-c CONFIG_DIR, --config-dir=CONFIG_dir
The location of the Salt configuration directory. This directory contains the configuration files for Salt master
and minions. The default location on most systems is /etc/salt.

-r, --roster
The Roster module to use to compile the list of targeted devices.

--roster-file
Absolute path to the Roster file to load (when the Roster module requires a file). Default: /etc/salt/
roster.

--sync
Whether should return the entire output at once, or for every device separately as they return.

31

https://docs.saltstack.com/en/latest/ref/cli/salt.html
https://docs.saltstack.com/en/latest/ref/cli/salt-run.html


salt-sproxy Documentation

--cache-grains
Cache the collected Grains. Beware that this option overwrites the existing Grains. This may be helpful when
using the salt-sproxy only, but may lead to unexpected results when running in a mixed environment.

--cache-pillar
Cache the collected Pillar. Beware that this option overwrites the existing Pillar. This may be helpful when
using the salt-sproxy only, but may lead to unexpected results when running in a mixed environment.

--no-cached-grains
Do not use the cached Grains (i.e., recollect regardless).

--no-cached-pillar
Do not use the cached Pillar (i.e., recompile regardless).

--no-grains
Do not attempt to collect Grains at all. While it does reduce the runtime, this may lead to unexpected results
when the Grains are referenced in other subsystems.

--no-pillar
Do not attempt to compile Pillar at all. While it does reduce the runtime, this may lead to unexpected results
when the Pillar data is referenced in other subsystems.

-b, --batch, --batch-size
The number of devices to connect to in parallel.

--preview-target
Show the devices expected to match the target, without executing any function (i.e., just print the list of devices
matching, then exit).

--sync-roster
Synchronise the Roster modules (both salt-sproxy native and provided by the user in their own environment).
Default: True.

--events
Whether should put the events on the Salt bus (mostly useful when having a Master running). Default: False.

Important: See Event-Driven Automation and Orchestration for further details.

--use-existing-proxy
Execute the commands on an existing Proxy Minion whenever available. If one or more Minions matched by the
target don’t exist (or the key is not accepted by the Master), salt-sproxy will fallback and execute the command
locally, and, implicitly, initiate the connection to the device locally.

Note: This option requires a Master to be up and running. See Mixed Environments for more information.

--file-roots, --display-file-roots
Display the location of the salt-sproxy installation, where you can point your file_roots on the Master, to
use the Proxy Runner and other extension modules included in the salt-sproxy package. See also The Proxy
Runner.

--save-file-roots
Save the configuration for the file_roots in the Master configuration file, in order to start using the Proxy
Runner and other extension modules included in the salt-sproxy package. See also The Proxy Runner. This
option is going to add the salt-sproxy installation path to your existing file_roots.

32 Chapter 7. See Also



salt-sproxy Documentation

7.1.1 Logging Options

Logging options which override any settings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet.
Default: error.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: error.

7.1.2 Target Selection

The default matching that Salt utilizes is shell-style globbing around the minion id. See https://docs.python.org/2/
library/fnmatch.html#module-fnmatch.

-E, --pcre
The target expression will be interpreted as a PCRE regular expression rather than a shell glob.

-L, --list
The target expression will be interpreted as a comma-delimited list; example:
server1.foo.bar,server2.foo.bar,example7.quo.qux

-G, --grain
The target expression matches values returned by the Salt grains system on the minions. The target expression
is in the format of ‘<grain value>:<glob expression>’; example: ‘os:Arch*’

This was changed in version 0.9.8 to accept glob expressions instead of regular expression. To use regular
expression matching with grains, use the –grain-pcre option.

--grain-pcre
The target expression matches values returned by the Salt grains system on the minions. The target expression
is in the format of ‘<grain value>:< regular expression>’; example: ‘os:Arch.*’

-N, --nodegroup
Use a predefined compound target defined in the Salt master configuration file.

-R, --range
Instead of using shell globs to evaluate the target, use a range expression to identify targets. Range expressions
look like %cluster.

Using the Range option requires that a range server is set up and the location of the range server is referenced
in the master configuration file.

7.1.3 Output Options

--out
Pass in an alternative outputter to display the return of data. This outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, table, and many
others.

Some outputters are formatted only for data returned from specific functions. If an outputter is used that does
not support the data passed into it, then Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

7.1. Command Line and Configuration Options 33

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/fnmatch.html#module-fnmatch


salt-sproxy Documentation

Note: If using --out=json, you will probably want --sync as well. Without the sync option, you will
get a separate JSON string per minion which makes JSON output invalid as a whole. This is due to using an
iterative outputter. So if you want to feed it to a JSON parser, use --sync as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outputters that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--out-file-append, --output-file-append
Append the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a ex-
pected future change in configuration.

--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT
Override the configured state_output value for minion output. One of ‘full’, ‘terse’, ‘mixed’, ‘changes’ or ‘filter’.
Default: ‘none’.

--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE
Override the configured state_verbose value for minion output. Set to True or False. Default: none.

7.2 Installation

The base installation is pretty much straightforward, salt-sproxy is installable using pip. See https://packaging.
python.org/tutorials/installing-packages/ for a comprehensive guide on the installing Python packages.

Either when installing in a virtual environment, or directly on the base system, execute the following:

$ pip install salt-sproxy

If you would like to install a specific Salt version, you will firstly need to instal Salt (via pip) pinning to the desired
version, e.g.,

$ pip install salt==2018.3.4
$ pip install salt-sproxy

7.2.1 Easy installation

We also provide a script to install the system requirements: https://raw.githubusercontent.com/mirceaulinic/
salt-sproxy/master/install.sh

Usage example:

34 Chapter 7. See Also

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.sh
https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.sh


salt-sproxy Documentation

• Using curl

$ curl sproxy-install.sh -L https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

• Using wget

$ wget -O sproxy-install.sh https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

• Using fetch (on FreeBSD)

$ fetch -o sproxy-install.sh https://raw.githubusercontent.com/mirceaulinic/salt-
→˓sproxy/master/install.sh
# check the contents of sproxy-install.sh
$ sudo sh sproxy-install.sh

One liner:

Warning: This method can be dangerous and it is not recommended on production systems.

$ curl -L https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/install.
→˓sh | sudo sh

See https://gist.github.com/mirceaulinic/bdbbbcfbc3588b1c8b1ec7ef63931ac6 for a sample one-line installation on a
fresh Fedora server.

The script ensures Python 3 is installed on your system, together with the virtualenv package, and others required for
Salt, in a virtual environment under the $HOME/venvs/salt-sproxy path. In fact, when executing, you will see
that the script will tell where it’s going to try to install, e.g.,

$ sudo sh install.sh

Installing salt-sproxy under /home/mircea/venvs/salt-sproxy

Reading package lists... Done

~~~ snip ~~~

Installation complete, now you can start using by executing the following command:
. /home/mircea/venvs/salt-sproxy/bin/activate

After that, you can start using it:

$. /home/mircea/venvs/salt-sproxy/bin/activate
(salt-sproxy) $
(salt-sproxy) $ salt-sproxy -V
Salt Version:

Salt: 2019.2.0
Salt SProxy: 2019.6.0b1

Dependency Versions:

(continues on next page)

7.2. Installation 35

https://gist.github.com/mirceaulinic/bdbbbcfbc3588b1c8b1ec7ef63931ac6

salt-sproxy Documentation

(continued from previous page)

Ansible: Not Installed
cffi: 1.12.3

dateutil: Not Installed
docker-py: Not Installed

gitdb: Not Installed
gitpython: Not Installed

Jinja2: 2.10.1
junos-eznc: 2.2.1

jxmlease: 1.0.1
libgit2: Not Installed

M2Crypto: Not Installed
Mako: Not Installed

msgpack-pure: Not Installed
msgpack-python: 0.6.1

NAPALM: 2.4.0
ncclient: 0.6.4
Netmiko: 2.3.3

paramiko: 2.4.2
pycparser: 2.19
pycrypto: 2.6.1

pycryptodome: Not Installed
pyeapi: 0.8.2
pygit2: Not Installed

PyNetBox: 4.0.6
PyNSO: Not Installed

Python: 3.6.7 (default, Oct 22 2018, 11:32:17)
python-gnupg: Not Installed

PyYAML: 5.1
PyZMQ: 18.0.1
scp: 0.13.2

smmap: Not Installed
textfsm: 0.4.1
timelib: Not Installed
Tornado: 4.5.3

ZMQ: 4.3.1

System Versions:
dist: Ubuntu 18.04 bionic

locale: UTF-8
machine: x86_64
release: 4.18.0-20-generic
system: Linux
version: Ubuntu 18.04 bionic

7.2.2 Upgrading

To install a newer version, you can execute pip install -U salt-sproxy, however this is also going to
upgrade your Salt installation. So in case you would like to use a specific Salt version, it might be a better idea to
install the specific salt-sproxy version you want. You can check at https://pypi.org/project/salt-sproxy/#history the list
of available salt-sproxy versions.

Example:

$ pip install salt-sproxy==2019.6.0

36 Chapter 7. See Also

https://pypi.org/project/salt-sproxy/#history

salt-sproxy Documentation

7.3 Using the Roster Interface

While from the CLI perspective salt-sproxy looks like it works similar to the usual salt command, in fact,
they work fundamentally different. One of the most important differences is that salt is aware of what Minions are
connected to the Master, therefore it is easy to know what Minions would be matched by a certain target expression (see
https://docs.saltstack.com/en/latest/topics/targeting/ for further details). In contrast, by definition, salt-sproxy
doesn’t suppose there are any (Proxy) Minions running, so it cannot possibly know what Minions would be matched
by an arbitrary expression. For this reasoning, we need to “help” it by providing the list of all the devices it should be
aware of. This is done through the Roster interface; even though this Salt subsystem has initially been developed for
salt-ssh.

There are several Roster modules natively available in Salt, or you may write a custom one in your own environment,
under the salt://_roster directory.

To make it work, you would need to provide two configuration options (either via the CLI, or through the Mas-
ter configuration file. See Command Line and Configuration Options, in particular -r (or -roster), and
--roster-file (when the Roster module loads the list of devices from a file).

For example, let’s see how we can use the Ansible Roster.

7.3.1 Roster usage example: Ansible

If you already have an Ansible inventory, simply drop it into a file, e.g., /etc/salt/roster.

Note: The Ansible inventory file doesn’t need to provide any connection details, as they must be configured into the
Pillar. If you do provide them however, they will be ignored. The Roster file (Ansible inventory in this case) needs to
provide really just the name of the devices you want to manage – everything else must go into the Pillar.

With that in mind, let’s consider a very simply inventory, e.g.,

/etc/salt/roster:

[routers]
router1
router2
router3

[switches]
switch1
switch2

Reference this file, and tell salt-sproxy to interpret this file as an Ansible inventory:

/etc/salt/master:

roster: ansible
roster_file: /etc/salt/roster

To verify that the inventory is interpreted correctly, run the following command which should display all the possible
devices salt-sproxy should be aware of:

$ salt-sproxy * --preview-target
- router1
- router2
- router3

(continues on next page)

7.3. Using the Roster Interface 37

https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/ssh/roster.html
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/ref/roster/all/index.html#all-salt-roster

salt-sproxy Documentation

(continued from previous page)

- switch1
- switch2

Then you can check that your desired target matches - say run against all the routers:

$ salt-sproxy 'router*' --preview-target
- router1
- router2
- router3

Hint: If you don’t provide the Roster name and the path to the Roster file, into the Master config file, you can specify
them on the command line, e.g.,

$ salt-sproxy 'router*' --preview-target -r ansible --roster-file /etc/salt/roster

The default target matching is glob (shell-like globbing) - see Target Selection for more details, and other target
selection options.

Important: Keep in mind that some Roster modules may not implement all the possible target selection options.

Using the inventory above, we can also use the PCRE (Perl Compatible Regular Expression) matching and target
devices using a regular expression, e.g.,

$ salt-sproxy -E 'router(1|2).?' --preview-target
- router1
- router2
$ salt-sproxy -E '(switch|router)1' --preview-target
- router1
- switch1

The inventory file doesn’t necessarily need to be flat, can be as complex as you want, e.g.,

all:
children:
usa:

children:
northeast: ~
northwest:
children:

seattle:
hosts:
edge1.seattle

vancouver:
hosts:
edge1.vancouver

southeast:
children:
atlanta:
hosts:
edge1.atlanta:
edge2.atlanta:

raleigh:
hosts:

(continues on next page)

38 Chapter 7. See Also

https://docs.saltstack.com/en/latest/topics/targeting/globbing.html#regular-expressions

salt-sproxy Documentation

(continued from previous page)

edge1.raleigh:
southwest:
children:
san_francisco:
hosts:
edge1.sfo

los_angeles:
hosts:
edge1.la

Using this inventory, you can then run, for example, against all the devices in Atlanta, to gather the LLDP neighbors
for every device:

$ salt-sproxy '*.atlanta' net.lldp
edge1.atlanta:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

Targeting using groups

Another very important detail here is that, depending on the structure of the inventory, and how the devices are grouped,
you can use these groups to target using the -N target type (nodegroup). For example, based on the hierarchical
inventory file above, we can use these targets:

All devices in the USA:
$ salt-sproxy -N usa --preview-target
- edge1.seattle
- edge1.vancouver
- edge1.atlanta
- edge2.atlanta
- edge1.raleigh
- edge1.la
- edge1.sfo

All devices in the North-West region:
$ salt-sproxy -N northwest --preview-target
- edge1.seattle
- edge1.vancouver

All devices in the Atlanta area:
$ salt-sproxy -N atlanta --preview-target
- edge1.atlanta
- edge2.atlanta

The nodegroups you can use for targeting depend on the names you’ve assigned in your inventory, and sometimes may
be more useful to use them vs. the device name (which may not contain the area / region / country name).

7.3.2 Loading the list of devices from the Pillar

The Pillar subsystem is powerful and flexible enough to be used as an input providing the list of devices and their
properties.

7.3. Using the Roster Interface 39

salt-sproxy Documentation

To use the Pillar Roster you only need to ensure that you can access the list of devices you want to manage into a Pillar.
The Pillar system is designed to provide data (from whatever source, i.e., HTTP API, database, or any file format you
may prefer) to one specific Minion (or some / all). That doesn’t mean that the Minion must be up and running, but
simply just that one or more Minions have access to this data.

In the Master configuration file, configure the roster or proxy_roster, e.g.,

roster: pillar

By default, the Pillar Roster is going to check the Pillar data for * (any Minion), and load it from the devices
key. In other words, when executing salt-sproxy pillar.show_pillar the output should have at least the
devices key. To use different settings, have a look at the documentation: Pillar Roster.

Consider the following example setup:

/etc/salt/master

pillar_roots:
base:
- /srv/salt/pillar

roster: pillar

/srv/salt/pillar/top.sls

base:
'*':
- devices_pillar

'minion*':
- dummy_pillar

/srv/salt/pillar/devices_pillar.sls

devices:
- name: minion1
- name: minion2

/srv/salt/pillar/dummy_pillar.sls

proxy:
proxytype: dummy

With this configuration, you can verify that the list of expected devices is properly defined:

$ salt-run pillar.show_pillar
devices:

|_

name:

minion1
|_

name:

minion2

Having this available, we can now start using salt-sproxy:

40 Chapter 7. See Also

salt-sproxy Documentation

$ salt-sproxy * --preview-target
- minion1
- minion2

When working with Pillar SLS files, you can provide them in any format, either Jinja + YAML, or pure Python, e.g.
generate a longer list of devices, dynamically:

/srv/salt/pillar/devices_pillar.sls

devices:
{% for id in range(100) %}
- name: minion{{ id }}
{%- endfor %}

Or:

/srv/salt/pillar/devices_pillar.sls

#!py

def run():
return {

'devices': [
'minion{}'.format(id_)
for id_ in range(100)

]
}

Note: The latter Python example would be particularly useful when the data compilation requires more computation,
while keeping the code readable, e.g., execute HTTP requests, or anything you can usually do in Python scripts in
general.

With either of the examples above, the targeting would match:

$ salt-sproxy * --preview-target
- minion0
- minion1

~~~ snip ~~~

- minion98
- minion99

As the Pillar SLS files are flexible enough to allow you to compile the list of devices you want to manage using
whatever way you need and possibly coded in Python. Say we would want to gather the list of devices from an HTTP
API:

/srv/salt/pillar/devices_pillar.sls

#!py

import requests

def run():
ret = requests.post('http://example.com/devices')
return {'devices': ret.json()}

7.3. Using the Roster Interface 41



salt-sproxy Documentation

Or another example, slightly more advanced - retrieve the devices from a MySQL database:

/srv/salt/pillar/devices_pillar.sls

#!py

import mysql.connector

def run():
devices = []
mysql_conn = mysql.connector.connect(host='localhost',

database='database',
user='user',
password='password')

get_devices_query = 'select * from devices'
cursor = mysql_conn.cursor()
cursor.execute(get_devices_query)
records = cursor.fetchall()
for row in records:

devices.append({'name': row[1]})
cursor.close()
return {'devices': devices}

Important: Everything with the Pillar system remains the same as always, so you can very well use also the External
Pillar to provide the list of devices - see https://docs.saltstack.com/en/latest/ref/pillar/all/index.html for the list of the
available External Pillars modules that allow you to load data from various sources.

Check also the Using the Pillar Roster example on how to load the list of devices from an External Pillar, as the
functionaly you may need might already be implemented and available.

7.3.3 Roster usage example: NetBox

The NetBox Roster is a good example of a Roster modules that doesn’t work with files, rather gathers the data from
NetBox via the API.

Note: The NetBox Roster module is currently not available in the official Salt releases, and it is distributed as part
of the salt-sproxy package and dynamically loaded on runtime, so you don’t need to worry about that, simply
reference it, configure the details as documented and start using it straight away.

To use the NetBox Roster, simply put the following details in the Master configuration you want to use (default
/etc/salt/master):

roster: netbox

netbox:
url: <NETBOX_URL>

You can also specify the token, and the keyfile but for this Roster specifically, the url is sufficient.

To verify that you are indeed able to retrieve the list of devices from your NetBox instance, you can, for example,
execute:

42 Chapter 7. See Also

https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://github.com/digitalocean/netbox
https://netbox.readthedocs.io/en/stable/api/overview/


salt-sproxy Documentation

$ salt-run salt.cmd netbox.filter dcim devices
# ~~~ should normally return all the devices ~~~

# Or with some specific filters, e.g.:
$ salt-run salt.cmd netbox.filter dcim devices site=<SITE> status=<STATUS>

Once confirmed this works well, you can verify that the Roster is able to pull the data:

$ salt-sproxy '*' --preview-target

In the same way, you can then start executing Salt commands targeting using expressions that match the name of the
devices you have in NetBox:

$ salt-sproxy '*atlanta' net.lldp
edge1.atlanta:

~~~ snip ~~~
edge2.atlanta:

~~~ snip ~~~

7.3.4 Other Roster modules

If you may need to load your data from various other data sources, that might not be covered in the existing Roster
modules. Roster modules are easy to write, and you only need to drop them into your salt://_roster directory,
then it would be great if you could open source them for the benefit of the community (either submit them to this
repository, at https://github.com/mirceaulinic/salt-sproxy, or to the official Salt repository on GitHub)

7.4 The Proxy Runner

The Proxy Runner is the core functionality of salt-sproxy and can be used to trigger jobs as Reactions to external
events, or invoked when Using the Salt REST API.

In both cases mentioned above you are going to need to have a Salt Master running, that allows you to set up the
Reactors and the Salt API; that means, the proxy Runner needs to be available on your Master. To do so, you have
two options:

7.4.1 1. Reference it from the salt-sproxy installation

After installing salt-sproxy, you can execute the following command:

$ salt-sproxy --file-roots
salt-sproxy is installed at: /home/mircea/venvs/salt-sproxy/lib/python3.6/site-
→˓packages/salt_sproxy

You can configure the file_roots on the Master, e.g.,

file_roots:
base:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy

Or only for the Runners:

(continues on next page)

7.4. The Proxy Runner 43

https://github.com/mirceaulinic/salt-sproxy
https://github.com/saltstack/salt


salt-sproxy Documentation

(continued from previous page)

runner_dirs:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy/_runners

As suggested in the output, you can directly reference the salt-sproxy installation path to start using the proxy Runner
(and other extension modules included in the package).

A simpler alternative is executing with --save-file-roots which adds the path for you, e.g.,

$ salt-sproxy --save-file-roots
/home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy added to the
→˓file_roots:

file_roots:
base:
- /home/mircea/venvs/salt-sproxy/lib/python3.6/site-packages/salt_sproxy

Now you can start using salt-sproxy for event-driven automation, and the Salt REST
→˓API.
See https://salt-sproxy.readthedocs.io/en/latest/salt_api.html
and https://salt-sproxy.readthedocs.io/en/latest/events.html for more details.

7.4.2 2. Copy the source file

You can either download it from https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.
py, e.g., if your file_roots configuration on the Master looks like:

file_roots:
base:
- /srv/salt

You are going to need to create a directory under /srv/salt/_runners, then download the proxy Runner there:

$ mkdir -p /srv/salt/_runners
$ curl -o /srv/salt/_runners/proxy.py -L \

https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/salt_sproxy/_
→˓runners/proxy.py

Note: In the above I’ve used the raw like from GitHub to ensure the source code is preserved.

Alternatively, you can also put it under an arbitrary path, e.g., (configuration on the Master)

runner_dirs:
- /path/to/runners

Downloading the proxy Runner under that specific path:

$ curl -o /path/to/runners/proxy.py -L \
https://raw.githubusercontent.com/mirceaulinic/salt-sproxy/master/salt_sproxy/_

→˓runners/proxy.py

44 Chapter 7. See Also

https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.py
https://github.com/mirceaulinic/salt-sproxy/blob/master/salt_sproxy/_runners/proxy.py


salt-sproxy Documentation

7.5 Event-Driven Automation and Orchestration

7.5.1 Execution Events

Even though salt-sproxy has been designed to be an on-demand executed process (as in opposite to an always
running service), you still have the possibility to monitor what is being executed, and potentially export these events
or trigger a Reactor execution in response.

Note: To be able to have events, you will need to have a Salt Master running, and preferrably using the same Master
configuration file as salt-sproxy, to ensure that they are both sharing the same socket object.

Using the --events option on the CLI (or by configuring events: true in the Master configuration file),
salt-sproxy is going to inject events on the Salt bus as you’re running the usual Salt commands.

For example, running the following command (from the salt-sproxy with network devices example):

$ salt-sproxy juniper-router net.arp --events

Watching the event bus on the Master, you should notice the following events:

$ salt-run state.event pretty=True
20190529143434052740 {

"_stamp": "2019-05-29T14:34:34.053900",
"minions": [

"juniper-router"
]

}
proxy/runner/20190529143434054424/new {

"_stamp": "2019-05-29T14:34:34.055386",
"arg": [],
"fun": "net.arp",
"jid": "20190529143434054424",
"minions": [

"juniper-router"
],
"tgt": "juniper-router",
"tgt_type": "glob",
"user": "mircea"

}
proxy/runner/20190529143434054424/ret/juniper-router {

"_stamp": "2019-05-29T14:34:36.937409",
"fun": "net.arp",
"fun_args": [],
"id": "juniper-router",
"jid": "20190529143434054424",
"return": {

"out": [
{

"interface": "fxp0.0",
"mac": "92:99:00:0A:00:00",
"ip": "10.96.0.1",
"age": 926.0

},
{

"interface": "fxp0.0",

(continues on next page)

7.5. Event-Driven Automation and Orchestration 45

https://docs.saltstack.com/en/latest/topics/reactor/
http://salt-sproxy.readthedocs.io/en/latest/examples/napalm.html


salt-sproxy Documentation

(continued from previous page)

"mac": "92:99:00:0A:00:00",
"ip": "10.96.0.13",
"age": 810.0

},
{

"interface": "em1.0",
"mac": "02:42:AC:13:00:02",
"ip": "128.0.0.16",
"age": 952.0

}
],
"result": true,
"comment": ""

},
"success": true

}

As in the example, above, every execution pushes at least three events:

• Job creation. The tag is the JID of the execution.

• Job payload with the job details, i.e., function name, arguments, target expression and type, matched devices,
etc.

• One separate return event from every device.

A more experienced Salt user may have already noticed that the structure of these events is very similar to the usual
Salt native events when executing a regular command using the usual salt. Let’s take an example for clarity:

$ salt 'test-minion' test.ping
test-minion:

True

The event bus:

$ salt-run state.event pretty=True
20190529144939496567 {

"_stamp": "2019-05-29T14:49:39.496954",
"minions": [

"test-minion"
]

}
salt/job/20190529144939496567/new {

"_stamp": "2019-05-29T14:49:39.498021",
"arg": [],
"fun": "test.ping",
"jid": "20190529144939496567",
"minions": [

"test-minion"
],
"missing": [],
"tgt": "test-minion",
"tgt_type": "glob",
"user": "sudo_mulinic"

}
salt/job/20190529144939496567/ret/test-minion {

"_stamp": "2019-05-29T14:49:39.905727",
"cmd": "_return",

(continues on next page)

46 Chapter 7. See Also



salt-sproxy Documentation

(continued from previous page)

"fun": "test.ping",
"fun_args": [],
"id": "test-minion",
"jid": "20190529144939496567",
"retcode": 0,
"return": true,
"success": true

}

That said, if you already have Reactors matching Salt events, in order to trigger them in response to salt-
sproxy commands, you would only need to update the tag matching expression (i.e., besides salt/job/
20190529144939496567/new should also match proxy/runner/20190529143434054424/new tags,
etc.).

In the exact same way with other Engine types – if you already have Engines exporting events, they should be able to
export salt-sproxy events as well, which is a great easy win for PCI compliance, and generally to monitor who executes
what.

7.5.2 Reactions to external events

Using the The Proxy Runner, you can configure a Reactor to execute a Salt function on a (network) device in response
to an event.

For example, let’s consider network events from napalm-logs. To import the napalm-logs events on the Salt bus,
simply enable the napalm_syslog Salt Engine on the Master.

In response to an INTERFACE_DOWN notification, say we define the following reaction, in response to
events with the napalm/syslog/*/INTERFACE_DOWN/* pattern (i.e., matching events such as napalm/
syslog/iosxr/INTERFACE_DOWN/edge-router1, napalm/syslog/junos/INTERFACE_DOWN/
edge-router2, etc.):

/etc/salt/master

reactor:
- 'napalm/syslog/*/INTERFACE_DOWN/*':
- salt://reactor/if_down_shutdown.sls

The salt://reactor/if_down_shutdown.sls translates to /etc/salt/reactor/
if_down_shutdown.sls when /etc/salt is one of the configured file_roots. To apply a configuration
change on the device with the interface down, we can use the _runner.proxy.execute() Runner function:

shutdown_interface:
runner.proxy.execute:
- tgt: {{ data.host }}
- function: net.load_template
- kwarg:

template_name: salt://templates/shut_interface.jinja
interface_name: {{ data.yang_message.interfaces.interface.keys()[0] }}

This Reactor would apply a configuration change as rendered in the Jinja template salt://templates/
shut_interface.jinja (physical path /etc/salt/templates/shut_interface.jinja). Or, to
have an end-to-end overview of the system: when the device sends a notification that one interface is down, in re-
sponse, Salt is automatically going to try and remediate the problem (in the shut_interface.jinja template
you can define the business logic you need). Similarly, you can have other concurrent reactions to the same, e.g. to
send a Slack notification, and email and so on.

7.5. Event-Driven Automation and Orchestration 47

http://napalm-logs.com/en/latest/
https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html
http://napalm-logs.com/en/latest/messages/INTERFACE_DOWN.html


salt-sproxy Documentation

For reactions to napalm-logs events specifically, you can continue reading more at https://mirceaulinic.net/
2017-10-19-event-driven-network-automation/ for a more extensive introduction and the napalm-logs documenta-
tion available at https://napalm-logs.readthedocs.io/en/latest/, with the difference that instead of calling a Salt function
directly, you go through the _runner.proxy.execute() or _runner.proxy.execute_devices() Run-
ner functions.

7.6 Using the Salt REST API

To be able to use the Salt HTTP API, similarly to Event-Driven Automation and Orchestration, you will need to have
the Salt Master running, and, of course, also the Salt API service.

As the core functionality if based on the Proxy Runner, check out first the notes from The Proxy Runner to understand
how to have the proxy Runner available on your Master.

The Salt API configuration is unchanged from the usual approaches: see https://docs.saltstack.com/en/latest/ref/netapi/
all/salt.netapi.rest_cherrypy.html how to configure and https://docs.saltstack.com/en/latest/ref/cli/salt-api.html how to
start up the salt-api process.

Suppose we have the following configuration:

/etc/salt/master

rest_cherrypy:
port: 8080
ssl_crt: /etc/pki/tls/certs/localhost.crt
ssl_key: /etc/pki/tls/certs/localhost.key

Hint: Consider looking at the Salt REST API example for a more complete example on configuring the Salt API,
however the official Salt documentation should always be used as the reference.

After starting the salt-api process, we should get the following:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Content-Type: application/json
Server: CherryPy/18.1.1
Date: Wed, 05 Jun 2019 07:58:32 GMT
Allow: GET, HEAD, POST
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: GET, POST
Access-Control-Allow-Credentials: true
Vary: Accept-Encoding
Content-Length: 146

{"return": "Welcome", "clients": ["local", "local_async", "local_batch", "local_subset
→˓", "runner", "runner_async", "ssh", "wheel", "wheel_async"]}

That means the Salt API is ready to receive requests.

To invoke a command on a (network) device managed through Salt, you can use the proxy Runner to invoke com-
mands on, e.g.,

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \

(continues on next page)

48 Chapter 7. See Also

https://mirceaulinic.net/2017-10-19-event-driven-network-automation/
https://mirceaulinic.net/2017-10-19-event-driven-network-automation/
https://napalm-logs.readthedocs.io/en/latest/
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html
https://docs.saltstack.com/en/latest/ref/cli/salt-api.html


salt-sproxy Documentation

(continued from previous page)

-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='minion1' \
-d function='test.ping' \
-d sync=True

return:
- minion1: true

Note that the execution is at the /run endpoint, with the following details:

• username, password, eauth as configured in the external_auth. See https://docs.saltstack.com/en/
latest/topics/eauth/index.html for more details and how to configure external authentication.

• client is runner, as we’re going to use the proxy Runner.

• fun is the name of the Runner function, in this case _runners.proxy.execute().

• tgt is the Minion ID / device name to target.

• function is the Salt function to execute on the targeted device(s).

• sync is set as True as the execution must be synchronous because we’re waiting for the output to be returned
back over the API. Otherwise, if we only need to invoke the function without expecting an output, we don’t need
to pass this argument.

This HTTP request is the equivalent of CLI from the example salt-sproxy 101:

$ salt-sproxy minion1 test.ping

It works in the same way when execution function on actual devices, for instance when gathering the ARP table
from a Juniper router (the equivalent of the salt-sproxy juniper-router net.arp CLI from the example
salt-sproxy with network devices):

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.arp' \
-d sync=True

return:
- juniper-router:

comment: ''
out:
- age: 891.0

interface: fxp0.0
ip: 10.96.0.1
mac: 92:99:00:0A:00:00

- age: 1001.0
interface: fxp0.0
ip: 10.96.0.13
mac: 92:99:00:0A:00:00

- age: 902.0
interface: em1.0
ip: 128.0.0.16

(continues on next page)

7.6. Using the Salt REST API 49

https://docs.saltstack.com/en/latest/topics/eauth/index.html
https://docs.saltstack.com/en/latest/topics/eauth/index.html


salt-sproxy Documentation

(continued from previous page)

mac: 02:42:AC:12:00:02
result: true

Or when updating the configuration:

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.load_config' \
-d text='set system ntp server 10.10.10.1' \
-d test=True \
-d sync=True

return:
- juniper-router:

already_configured: false
comment: Configuration discarded.
diff: '[edit system]

+ ntp {
+ server 10.10.10.1;
+ }'

loaded_config: ''
result: true

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
-d eauth='pam' \
-d username='mircea' \
-d password='pass' \
-d client='runner' \
-d fun='proxy.execute' \
-d tgt='juniper-router' \
-d function='net.load_config' \
-d text='set system ntp server 10.10.10.1' \
-d sync=True

return:
- juniper-router:

already_configured: false
comment: ''
diff: '[edit system]

+ ntp {
+ server 10.10.10.1;
+ }'

loaded_config: ''
result: true

You can follow the same methodology with any other Salt function (including States) that you might want to execute
against a device, without having a (Proxy) Minion running.

7.7 Mixed Environments

When running in a mixed environment (you already have (Proxy) Minions running, and you would also like to use the
salt-sproxy), it is highly recommended to ensure that salt-sproxy is using the same configuration file as your Master,

50 Chapter 7. See Also



salt-sproxy Documentation

and the Master is up and running.

Using the --use-existing-proxy option on the CLI, or configuring use_existing_proxy: true in
the Master configuration file, salt-sproxy is going to execute the command on the Minions that are connected to
this Master (and matching your target), otherwise the command is going to be executed locally.

For example, suppose we have two devices, identified as minion1 and minion2, extending the example salt-sproxy
101:

/srv/salt/pillar/top.sls:

base:
'minion*':
- dummy

/srv/salt/pillar/dummy.sls:

proxy:
proxytype: dummy

The Master configuration remains the same:

/etc/salt/master:

pillar_roots:
base:
- /srv/salt/pillar

Starting up the Master, and the minion1 Proxy:

# start the Salt Master
$ salt-master -d

# start the Proxy Minion for ``minion1``
$ salt-proxy --proxyid minion1 -d

# accept the key of minion1
$ salt-key -y -a minion1

# check that minion1 is now up and running
$ salt minion1 test.ping
minion1:

Test

In a different terminal window, you can start watching the Salt event bus (and leave it open, as I’m going to reference
the events below):

$ salt-run state.event pretty=True
# here you will see the events flowing

Executing the following command, notice that the execution takes place locally (you can identify using the proxy/
runner event tag):

$ salt-sproxy -L minion1,minion2 test.ping --events
minion1:

True
minion2:

True

The event bus:

7.7. Mixed Environments 51



salt-sproxy Documentation

20190603145654312094 {
"_stamp": "2019-06-03T13:56:54.312664",
"minions": [

"minion1",
"minion2"

]
}
proxy/runner/20190603145654313680/new {

"_stamp": "2019-06-03T13:56:54.314249",
"arg": [],
"fun": "test.ping",
"jid": "20190603145654313680",
"minions": [

"minion1",
"minion2"

],
"tgt": [

"minion1",
"minion2"

],
"tgt_type": "list",
"user": "sudo_mircea"

}
proxy/runner/20190603145654313680/ret/minion1 {

"_stamp": "2019-06-03T13:56:54.406816",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603145654313680",
"return": true,
"success": true

}
proxy/runner/20190603145654313680/ret/minion2 {

"_stamp": "2019-06-03T13:56:54.538850",
"fun": "test.ping",
"fun_args": [],
"id": "minion2",
"jid": "20190603145654313680",
"return": true,
"success": true

}

As presented in Event-Driven Automation and Orchestration, there is one event for the job creating, then one for
job start, and one event for each device separately (i.e., proxy/runner/20190603145654313680/ret/
minion1 and proxy/runner/20190603145654313680/ret/minion2, respectively).

Now, if we want to execute the same, but use the already running Proxy Minion for minion1 (started previously),
simply pass the --use-existing-proxy option:

$ salt-sproxy -L minion1,minion2 test.ping --events --use-existing-proxy
minion2:

True
minion1:

True

In this case, the event bus would look like below:

52 Chapter 7. See Also



salt-sproxy Documentation

proxy/runner/20190603150335939481/new {
"_stamp": "2019-06-03T14:03:35.940128",
"arg": [],
"fun": "test.ping",
"jid": "20190603150335939481",
"minions": [

"minion1",
"minion2"

],
"tgt": [

"minion1",
"minion2"

],
"tgt_type": "list",
"user": "sudo_mircea"

}
salt/job/20190603150335939481/new {

"_stamp": "2019-06-03T14:03:36.047971",
"arg": [],
"fun": "test.ping",
"jid": "20190603150335939481",
"minions": [

"minion1"
],
"missing": [],
"tgt": "minion1",
"tgt_type": "glob",
"user": "sudo_mircea"

}
salt/job/20190603150335939481/ret/minion1 {

"_stamp": "2019-06-03T14:03:36.147398",
"cmd": "_return",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603150335939481",
"retcode": 0,
"return": true,
"success": true

}
proxy/runner/20190603150335939481/ret/minion2 {

"_stamp": "2019-06-03T14:03:36.245592",
"fun": "test.ping",
"fun_args": [],
"id": "minion2",
"jid": "20190603150335939481",
"return": true,
"success": true

}
proxy/runner/20190603150335939481/ret/minion1 {

"_stamp": "2019-06-03T14:03:36.247206",
"fun": "test.ping",
"fun_args": [],
"id": "minion1",
"jid": "20190603150335939481",
"return": true,
"success": true

}

7.7. Mixed Environments 53



salt-sproxy Documentation

In this sequence of events, you can notice that, in addition to the events from the previous example, there are two addi-
tional events: salt/job/20190603150335939481/new - which is for the job start against the minion1 Proxy
Minion, and salt/job/20190603150335939481/ret/minion1 - which is the return from the minion1
Proxy Minion. The presence of the salt/job event tags proves that the execution goes through the already existing
Proxy Minion.

If you would like to always execute through the available Minions, whenever possible, you can add the following
option to the Master configuration file:

use_existing_proxy: true

7.8 Large Scale Settings

The reference document remains https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html with some small
differences. Note however that if you’re running in Mixed Environments, the notes from the Using Salt at Scale
document must be followed in order to manage a large number of devices (i.e., thousands or tens of thousands).

When running salt-sproxy only - without relying on other existing Minions, it is still highly encour-
aged to use the batch mode when executing: https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#
too-many-minions-returning-at-once Usage example:

$ salt-sproxy '*' state.highstate -b 20

This will only execute on 20 devices at once, while looping through all the targeted devices.

When running in an environment with a Salt Master running and pushing events on the bus as detailed in Execution
Events, targeting a large number of devices may lead to a higher density of events which requires to increase the size
of the event bus and other specific options, e.g., the ZeroMQ high-water mark and backlog - see https://docs.saltstack.
com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings for more details and options.

54 Chapter 7. See Also

https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-returning-at-once
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-returning-at-once
https://docs.saltstack.com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings
https://docs.saltstack.com/en/latest/ref/configuration/master.html#master-large-scale-tuning-settings


Python Module Index

_
_roster.ansible, 23
_roster.netbox, 25
_roster.pillar, 25
_runners.proxy, 26

55



salt-sproxy Documentation

56 Python Module Index



Index

Symbols
-cache-grains

command line option, 31
-cache-pillar

command line option, 32
-events

command line option, 32
-file-roots, -display-file-roots

command line option, 32
-force-color

command line option, 34
-grain-pcre

command line option, 33
-log-file-level=LOG_LEVEL_LOGFILE

command line option, 33
-log-file=LOG_FILE

command line option, 33
-no-cached-grains

command line option, 32
-no-cached-pillar

command line option, 32
-no-color

command line option, 34
-no-grains

command line option, 32
-no-pillar

command line option, 32
-out

command line option, 33
-out-file-append, -output-file-append

command line option, 34
-out-file=OUTPUT_FILE,

-output-file=OUTPUT_FILE
command line option, 34

-out-indent OUTPUT_INDENT,
-output-indent OUTPUT_INDENT

command line option, 34
-preview-target

command line option, 32

-roster-file
command line option, 31

-save-file-roots
command line option, 32

-state-output=STATE_OUTPUT,
-state_output=STATE_OUTPUT

command line option, 34
-state-verbose=STATE_VERBOSE,

-state_verbose=STATE_VERBOSE
command line option, 34

-sync
command line option, 31

-sync-roster
command line option, 32

-use-existing-proxy
command line option, 32

-version
command line option, 31

-versions-report
command line option, 31

-E, -pcre
command line option, 33

-G, -grain
command line option, 33

-L, -list
command line option, 33

-N, -nodegroup
command line option, 33

-R, -range
command line option, 33

-b, -batch, -batch-size
command line option, 32

-c CONFIG_DIR, -config-dir=CONFIG_dir
command line option, 31

-h, -help
command line option, 31

-l LOG_LEVEL, -log-level=LOG_LEVEL
command line option, 33

-r, -roster
command line option, 31

57



salt-sproxy Documentation

_roster.ansible (module), 23
_roster.netbox (module), 25
_roster.pillar (module), 25
_runners.proxy (module), 26

C
command line option

-cache-grains, 31
-cache-pillar, 32
-events, 32
-file-roots, -display-file-roots, 32
-force-color, 34
-grain-pcre, 33
-log-file-level=LOG_LEVEL_LOGFILE,

33
-log-file=LOG_FILE, 33
-no-cached-grains, 32
-no-cached-pillar, 32
-no-color, 34
-no-grains, 32
-no-pillar, 32
-out, 33
-out-file-append,

-output-file-append, 34
-out-file=OUTPUT_FILE,

-output-file=OUTPUT_FILE, 34
-out-indent OUTPUT_INDENT,

-output-indent OUTPUT_INDENT,
34

-preview-target, 32
-roster-file, 31
-save-file-roots, 32
-state-output=STATE_OUTPUT,

-state_output=STATE_OUTPUT, 34
-state-verbose=STATE_VERBOSE,

-state_verbose=STATE_VERBOSE,
34

-sync, 31
-sync-roster, 32
-use-existing-proxy, 32
-version, 31
-versions-report, 31
-E, -pcre, 33
-G, -grain, 33
-L, -list, 33
-N, -nodegroup, 33
-R, -range, 33
-b, -batch, -batch-size, 32
-c CONFIG_DIR,

-config-dir=CONFIG_dir, 31
-h, -help, 31
-l LOG_LEVEL, -log-level=LOG_LEVEL,

33
-r, -roster, 31

E
execute() (in module _runners.proxy), 26
execute_devices() (in module _runners.proxy), 27

G
gen_modules() (_runners.proxy.SProxyMinion

method), 26

S
salt_call() (in module _runners.proxy), 28
SProxyMinion (class in _runners.proxy), 26
StandaloneProxy (class in _runners.proxy), 26

T
targets() (in module _roster.ansible), 24
targets() (in module _roster.netbox), 25
targets() (in module _roster.pillar), 25

58 Index


	Install
	Quick Start
	Usage
	Docker
	More usage examples
	Extension Modules
	See Also
	Python Module Index
	Index

